State of the art of bioimplants manufacturing: part I

Bioimplants are becoming increasingly important in the modern society due to the fact of an aging population and associated issues of osteoporosis and osteoarthritis. The manufacturing of bioimplants involves an understanding of both mechanical engineering and biomedical science to produce biocompatible products with adequate lifespans. A suitable selection of materials is the prerequisite for a long-term and reliable service of the bioimplants, which relies highly on the comprehensive understanding of the material properties. In this paper, most biomaterials used for bioimplants are reviewed. The typical manufacturing processes are discussed in order to provide a perspective on the development of manufacturing fundamentals and latest technologies. The review also contains a discussion on the current measurement and evaluation constraints of the finished bioimplant products. Potential future research areas are presented at the end of this paper.

[1]  S. Zaborski,et al.  Electrochemical polishing of total hip prostheses , 2011 .

[2]  J. Lemons,et al.  Biocompatibility studies on surgical-grade titanium-, cobalt-, and iron-base alloys. , 1976, Journal of biomedical materials research.

[3]  Y. Zheng,et al.  Surface modification of an Mg-1Ca alloy to slow down its biocorrosion by chitosan , 2009, Biomedical materials.

[4]  G. Basim,et al.  Application of chemical mechanical polishing process on titanium based implants. , 2016, Materials science & engineering. C, Materials for biological applications.

[5]  Joseph R. Davis Handbook of Materials for Medical Devices , 2003 .

[6]  Y. Zhou,et al.  In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. , 2002, Biomaterials.

[7]  M. Niinomi Biologically and Mechanically Biocompatible Titanium Alloys , 2008 .

[8]  R. Zeng,et al.  Characterization and wear resistance of macro-arc oxidation coating on magnesium alloy AZ91 in simulated body fluids , 2008 .

[9]  L. Nolte,et al.  Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. , 1999, Journal of biomedical materials research.

[10]  H. Dehghani,et al.  A quantitative method to measure biofilm removal efficiency from complex biomaterial surfaces using SEM and image analysis , 2016, Scientific Reports.

[11]  J. Morenza,et al.  Influence of the interface layer on the adhesion of pulsed laser deposited hydroxyapatite coatings on titanium alloy , 2002 .

[12]  A. Wennerberg,et al.  Improved retention and bone-tolmplant contact with fluoride-modified titanium implants. , 2004, The International journal of oral & maxillofacial implants.

[13]  U. Schäfer,et al.  The biological and toxicological importance of molybdenum in the environment and in the nutrition of plants, animals and man. Part V: Essentiality and toxicity of molybdenum. , 2010 .

[14]  J. Chevalier,et al.  What future for zirconia as a biomaterial? , 2006, Biomaterials.

[15]  R. Doremus,et al.  Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface. , 1977, Journal of bioengineering.

[16]  Y. Okazaki Effect of friction on anodic polarization properties of metallic biomaterials. , 2002, Biomaterials.

[17]  Y. Carvalho,et al.  Porous titanium scaffolds produced by powder metallurgy for biomedical applications , 2008 .

[18]  X. Zhu,et al.  In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels. , 2001, Biomaterials.

[19]  B. Wei,et al.  Surface Properties and Corrosion Behavior of Co–Cr Alloy Fabricated with Selective Laser Melting Technique , 2013, Cell Biochemistry and Biophysics.

[20]  T. Yamamuro,et al.  The bonding behavior of calcite to bone. , 1991, Journal of biomedical materials research.

[21]  Rainer Bader,et al.  Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds , 2016 .

[22]  L. Jordan,et al.  Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates. , 2005, Dental materials : official publication of the Academy of Dental Materials.

[23]  I. Iordanova,et al.  Changes of microstructure and mechanical properties of cold-rolled low carbon steel due to its surface treatment by Nd:glass pulsed laser , 2002 .

[24]  Mythili Prakasam,et al.  Biodegradable Materials and Metallic Implants—A Review , 2017, Journal of functional biomaterials.

[25]  Muslim Mahardika,et al.  Influence of grit blasting treatment using steel slag balls on the subsurface microhardness, surface characteristics and chemical composition of medical grade 316L stainless steel , 2012 .

[26]  M. Lewandowska-Szumieł,et al.  Effect of phosphorus-ion implantation on the corrosion resistance and biocompatibility of titanium. , 2002, Biomaterials.

[27]  F. Haddad,et al.  Increased force simulator wear testing of a zirconium oxide total knee arthroplasty. , 2009, The Knee.

[28]  S. Spriano,et al.  Tantalum-based multilayer coating on cobalt alloys in total hip and knee replacement , 2012 .

[29]  O. Harrysson,et al.  Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology , 2008 .

[30]  S. Guan,et al.  In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. , 2010, Acta biomaterialia.

[31]  K. Khor,et al.  Post-spray hot isostatic pressing of plasma sprayed Ti6Al4V/hydroxyapatite composite coatings , 1997 .

[32]  N. A. Abu Osman,et al.  Fabrication and characterization of DLC coated microdimples on hip prosthesis heads. , 2015, Journal of biomedical materials research. Part B, Applied biomaterials.

[33]  Yonghui Yang,et al.  Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V substrate. , 2001, Biomaterials.

[34]  E. Saiz,et al.  Nanostructured Hydroxyapatite Coatings for Improved Adhesion and Corrosion Resistance for Medical Implants , 2001 .

[35]  P. Serekian Hydroxyapatite: from Plasma Spray to Electrochemical Deposition , 2004 .

[36]  V. Jain,et al.  ABRASIVE-BASED NANO-FINISHING TECHNIQUES: AN OVERVIEW , 2008 .

[37]  Wei Gao,et al.  Nanomanufacturing—Perspective and applications , 2017 .

[38]  Eiji Shamoto,et al.  Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration , 1991 .

[39]  Yang Leng,et al.  Electrochemical micromachining of titanium surfaces for biomedical applications , 2005 .

[40]  Han Huang,et al.  Deformation, failure and removal mechanisms of thin film structures in abrasive machining , 2017 .

[41]  Jian Lu,et al.  Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment , 2006 .

[42]  K. Ou,et al.  Effect of electrical-discharging on formation of nanoporous biocompatible layer on titanium , 2010 .

[43]  M. Mittal,et al.  Improvement in mechanical properties of plasma sprayed hydroxyapatite coatings by Al2O3 reinforcement. , 2013, Materials science & engineering. C, Materials for biological applications.

[44]  J. Jansen,et al.  Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants. , 1991, Journal of biomedical materials research.

[45]  A. Molenberg,et al.  Investigation of structural resorption behavior of biphasic bioceramics with help of gravimetry, μCT, SEM, and XRD. , 2016, Journal of biomedical materials research. Part B, Applied biomaterials.

[46]  B. Dabrowski,et al.  Modification of mechanical properties of sintered implant materials on the base of Co–Cr–Mo alloy , 2008 .

[47]  Khalil Abdelrazek Khalil,et al.  Processing and mechanical properties of porous 316L stainless steel for biomedical applications , 2007 .

[48]  P Ducheyne,et al.  Bioactive ceramic prosthetic coatings. , 1992, Clinical orthopaedics and related research.

[49]  P. Boutin [Alumina and its use in surgery of the hip. (Experimental study)]. , 1971, La Presse medicale.

[50]  W. Soboyejo,et al.  Cell/surface interactions and adhesion on Ti-6Al-4V: effects of surface texture. , 2007, Journal of biomedical materials research. Part B, Applied biomaterials.

[51]  J. Ramsden,et al.  Direct measurement of the viscoelasticity of adsorbed protein layers using atomic force microscopy. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[52]  H. Ohmori,et al.  Development of a new grinding system for finishing of hemispherical inside surface , 2013 .

[53]  Frank Feyerabend,et al.  Magnesium-based implants: a mini-review. , 2014, Magnesium research.

[54]  Y. Mai,et al.  Laser shock processing and its effects on microstructure and properties of metal alloys: a review , 2002 .

[55]  M. M. Arafat,et al.  Stress enhanced TiO2 nanowire growth on Ti–6Al–4V particles by thermal oxidation , 2013 .

[56]  C. Piconi,et al.  Zirconia as a ceramic biomaterial. , 1999, Biomaterials.

[57]  D. Puleo,et al.  Ti-6Al-4V ion solution inhibition of osteogenic cell phenotype as a function of differentiation timecourse in vitro. , 1996, Biomaterials.

[58]  G. Goch,et al.  The Design and Manufacture of Biomedical Surfaces , 2007 .

[59]  W. Soboyejo,et al.  Multi-Scale Microstructural Characterization of Micro-Textured Ti-6Al-4V Surfaces , 2001 .

[60]  J. Lim,et al.  Mechanical properties of metals for biomedical applications using powder metallurgy process: A review , 2006 .

[61]  Yunzhi Yang,et al.  A review on calcium phosphate coatings produced using a sputtering process--an alternative to plasma spraying. , 2005, Biomaterials.

[62]  Dominique Shum-Tim,et al.  Electrochemical polishing as a 316L stainless steel surface treatment method: Towards the improvement of biocompatibility , 2014 .

[63]  G. Daculsi,et al.  Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. , 1998, Biomaterials.

[64]  William E. Frazier,et al.  Metal Additive Manufacturing: A Review , 2014, Journal of Materials Engineering and Performance.

[65]  B. S. Pabla,et al.  Electric discharge machining – A potential choice for surface modification of metallic implants for orthopedic applications: A review , 2016 .

[66]  S. Zec,et al.  The effect of annealing temperatures and cooling rates on microstructure and mechanical properties of investment cast Ti–6Al–4V alloy , 2006 .

[67]  Abhay Pandit,et al.  Fabrication methods of porous metals for use in orthopaedic applications. , 2006, Biomaterials.

[68]  Qing Li,et al.  Novel composite films prepared by sol–gel technology for the corrosion protection of AZ91D magnesium alloy , 2009 .

[69]  H. Rack,et al.  Titanium alloys in total joint replacement--a materials science perspective. , 1998, Biomaterials.

[70]  Orhan Öztürk,et al.  Metal ion release from nitrogen ion implanted CoCrMo orthopedic implant material , 2006 .

[71]  Lisa C. Klein,et al.  Sol-gel optics: processing and applications , 1994 .

[72]  G. Spur,et al.  Ultrasonic assisted grinding of ceramics , 1996 .

[73]  In-Hyu Choi,et al.  Micro surface phenomenon of ductile cutting in the ultrasonic vibration cutting of optical plastics , 1997 .

[74]  Konrad Wissenbach,et al.  Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting , 2013 .

[75]  S. R. Thompson,et al.  Fatigue crack nucleation and growth rate behavior of laser shock peened titanium , 1999 .

[76]  J. Paulo Davim,et al.  Machining : fundamentals and recent advances , 2008 .

[77]  P. D. de Oliveira,et al.  Histomorphometric analysis of the bone-implant contact obtained with 4 different implant surface treatments placed side by side in the dog mandible. , 2002, The International journal of oral & maxillofacial implants.

[78]  H. Aoki,et al.  Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique. , 2000, Bio-medical materials and engineering.

[79]  Stephen T. Newman,et al.  State of the art electrical discharge machining (EDM) , 2003 .

[80]  C. Wen,et al.  Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. , 2007, Acta biomaterialia.

[81]  H. Larker,et al.  Hot Isostatic Pressing , 2006 .

[82]  D. Landolt,et al.  Through‐Mask Electrochemical Micromachining of Titanium , 1999 .

[83]  Tapash R. Rautray,et al.  Ion implantation of titanium based biomaterials , 2011 .

[84]  C. Ju,et al.  A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys. , 2005, Biomaterials.

[85]  A. Singh,et al.  Ti based biomaterials, the ultimate choice for orthopaedic implants – A review , 2009 .

[86]  J. Bernard,et al.  Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. , 2002, Clinical oral implants research.

[87]  Takashi Nakamura,et al.  Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments. , 2011, Acta biomaterialia.

[88]  G. Dias,et al.  Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. , 2012, Acta biomaterialia.

[89]  Yuebin B. Guo,et al.  Fabrication and characterization of micro dent arrays produced by laser shock peening on titanium Ti–6Al–4V surfaces , 2011 .

[90]  Han Huang,et al.  Mechanical load-induced interfacial failure of a thin film multilayer in nanoscratching and diamond lapping , 2016 .

[91]  Belinda Pingguan-Murphy,et al.  Improved friction and wear performance of micro dimpled ceramic-on-ceramic interface for hip joint arthroplasty , 2015 .

[92]  P. Sarkar,et al.  Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics , 1996 .

[93]  Ryuichiro Ebara,et al.  Corrosion fatigue crack initiation behavior of stainless steels , 2010 .

[94]  L. A. Harris,et al.  X‐ray Photoelectron Spectroscopy Characterization of Ion‐Beam Sputter‐Deposited Calcium Phosphate Coatings , 1991 .

[95]  H. Ohgushi,et al.  BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. , 1998, Journal of biomedical materials research.

[96]  E. Evans,et al.  The in vitro toxicity of cobalt-chrome-molybdenum alloy and its constituent metals. , 1986, Biomaterials.

[97]  L. Murr,et al.  Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. , 2009, Journal of the mechanical behavior of biomedical materials.

[98]  A J Paine,et al.  Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000 , 2001, Human & experimental toxicology.

[99]  A. Toro,et al.  Wear of materials used for artificial joints in total hip replacements , 2008 .

[100]  Robert W. Eason,et al.  Pulsed laser deposition of thin films : applications-led growth of functional materials , 2006 .

[101]  E. Zalnezhad,et al.  Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper , 2014 .

[102]  C. Wen,et al.  Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. , 2009, Acta biomaterialia.

[103]  D. Landolt,et al.  Differential regulation of osteoblasts by substrate microstructural features. , 2005, Biomaterials.

[104]  A. Piattelli,et al.  Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits. , 2002, The Journal of oral implantology.

[105]  V. K. Jain,et al.  Analysis of forces on the freeform surface in magnetorheological fluid based finishing process , 2013 .

[106]  Serena M. Best,et al.  Bioceramics: Past, present and for the future , 2008 .

[107]  Y. L. Wang,et al.  Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank’s solution , 2007 .

[108]  D. Landolt,et al.  Fundamental aspects of electropolishing , 1987 .

[109]  Ning Liu,et al.  Development of highly porous titanium scaffolds by selective laser melting , 2010 .

[110]  Mmpa Marc Vermeulen,et al.  Design for precision : current status and trends , 1998 .

[111]  Min Wang,et al.  Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system , 2002 .

[112]  M. Elahinia,et al.  Manufacturing and processing of NiTi implants: A review , 2012 .

[113]  M. Fathi,et al.  Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder , 2008 .

[114]  R Narayanan,et al.  Calcium phosphate-based coatings on titanium and its alloys. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[115]  Costas Fotakis,et al.  Effect of processing parameters on the properties of hydroxylapatite films grown by pulsed laser deposition , 1995 .

[116]  N. Negishi,et al.  Elliptical Vibration Assisted Machining with Single Crystal Diamond Tools , 2003 .

[117]  Yulin Hao,et al.  Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy , 2011 .

[118]  Alokesh Pramanik,et al.  A Briefing on the Manufacture of Hip Joint Prostheses , 2009 .

[119]  Belinda Pingguan-Murphy,et al.  Fabrication and characterization of micro-dimple array on Al2O3 surfaces by using a micro-tooling , 2014 .

[120]  Berend Denkena,et al.  Prediction of contact conditions and theoretical roughness in manufacturing of complex implants by toric grinding tools , 2010 .

[121]  P. Layrolle,et al.  Surface treatments of titanium dental implants for rapid osseointegration. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[122]  B. Su,et al.  Micropatterning of titanium surfaces using electrochemical micromachining with an ethylene glycol electrolyte , 2011 .

[123]  C. M. Cotell Pulsed laser deposition and processing of biocompatible hydroxylapatite thin films , 1993 .

[124]  F. Escalas Biocompatibility of materials for total joint replacement. , 1976, The Proceedings of the Institute of Medicine of Chicago.

[125]  Craig A. Taylor,et al.  Residual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation , 2003 .

[126]  S. Ramakrishna,et al.  Biomedical applications of polymer-composite materials: a review , 2001 .

[127]  F. Heatley,et al.  In vivo corrosion of 316L stainless-steel hip implants: morphology and elemental compositions of corrosion products. , 1998, Biomaterials.

[128]  W. Rudolph,et al.  Trends in optical biomedical imaging , 1997 .

[129]  T. S. Srivatsan,et al.  Fatigue processes in metals—role of aqueous environments , 1990 .

[130]  K. Gotfredsen,et al.  Mechanical failure of hydroxyapatite-coated titanium and cobalt-chromium-molybdenum alloy implants. An animal study. , 1993, Acta orthopaedica Belgica.

[131]  J. Ciurana,et al.  Biomedical production of implants by additive electro-chemical and physical processes , 2012 .

[132]  A. Wennerberg,et al.  A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. , 1998, Clinical oral implants research.

[133]  H.-U. Danzebrink,et al.  Advances in Scanning Force Microscopy for Dimensional Metrology , 2006 .

[134]  W. Hozack,et al.  Catastrophic failure of modular zirconia-ceramic femoral head components after total hip arthroplasty. , 1995, The Journal of arthroplasty.

[135]  L. Murr,et al.  Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. , 2011, Journal of the mechanical behavior of biomedical materials.

[136]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[137]  V. Saikko Effect of Contact Area on the Wear and Friction of UHMWPE in Circular Translation Pin-on-Disk Tests , 2017 .

[138]  A Curtis,et al.  Topographical control of cells. , 1997, Biomaterials.

[139]  N. Zaveri,et al.  Biocorrosion studies of TiO2 nanoparticle-coated Ti–6Al–4V implant in simulated biofluids , 2010 .

[140]  K. Katti,et al.  Biomaterials in total joint replacement. , 2004, Colloids and surfaces. B, Biointerfaces.

[141]  T. Hanawa,et al.  9.04 – Failure Processes in Biometallic Materials , 2003 .

[142]  K. Lange,et al.  Evaluation of the interface between bone and titanium surfaces being blasted by aluminium oxide or bioceramic particles. , 2003, Clinical oral implants research.

[143]  Robert B. Heimann,et al.  Plasma-Spray Coating: Principles and Applications , 1996 .

[144]  B. Maviş,et al.  Dip Coating of Calcium Hydroxyapatite on Ti‐6Al‐4V Substrates , 2004 .

[145]  Changhe Li,et al.  Grinding model and material removal mechanism of medical nanometer zirconia ceramics. , 2014, Recent patents on nanotechnology.

[146]  B. Denkena,et al.  Manufacturing conditioned roughness and wear of biomedical oxide ceramics for all-ceramic knee implants , 2013, Biomedical engineering online.

[147]  Chuanzhong Chen,et al.  Pulsed laser deposition and its current research status in preparing hydroxyapatite thin films , 2005 .

[148]  Thomas G. Mathia,et al.  3D measurements of the knee prosthesis surfaces applied in optimizing of manufacturing process , 2004 .

[149]  Yadin David The Biomedical Engineering Handbook: Second Edition. , 1999 .

[150]  John L. Ricci,et al.  Laser Microtexturing of Implant Surfaces for Enhanced Tissue Integration , 2000, Materials: Book of Abstracts.

[151]  R. C. Mehrotra Chemistry of alkoxide precursors , 1990 .

[152]  Hyoun‐Ee Kim,et al.  Enhancing biocompatibility and corrosion resistance of Mg implants via surface treatments , 2012, Journal of biomaterials applications.

[153]  A. Leardini,et al.  Fabrication of Co–Cr–Mo endoprosthetic ankle devices by means of Selective Laser Melting (SLM) , 2016 .

[154]  B. Syrett,et al.  In vivo evaluation of a high-strength, high-ductility stainless steel for use in surgical implants. , 1979, Journal of biomedical materials research.

[155]  L. Pruitt,et al.  Characterization and tribology of PEG-like coatings on UHMWPE for total hip replacements. , 2009, Journal of biomedical materials research. Part A.

[156]  E. Chao,et al.  Bone ingrowth analysis and interface evaluation of hydroxyapatite coated versus uncoated titanium porous bone implants , 1994 .

[157]  A. Rossi,et al.  Effect of Electrophoretic Apatite Coating on Osseointegration of Titanium Dental Implants , 2003 .

[158]  D. Landolt,et al.  Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. , 2004, Biomaterials.

[159]  Chi Fai Cheung,et al.  Analysis of surface generation in the ultraprecision polishing of freeform surfaces , 2010 .

[160]  Robert F. Singer,et al.  Cellular Titanium by Selective Electron Beam Melting , 2007 .

[161]  R. Lakes,et al.  Hard Tissue Replacement II: Joints and Teeth , 1992 .

[162]  Tadashi Kokubo,et al.  Bioceramics and Their Clinical Applications , 2008 .

[163]  K. Nguyen,et al.  Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6Al4V. , 2007, Journal of biomedical materials research. Part A.

[164]  John M. Tamkin,et al.  A study of image artifacts caused by structured mid-spatial frequency fabrication errors on optical surfaces , 2010 .

[165]  T. Kuriyagawa,et al.  Recent advances in ultrasonic-assisted machining for the fabrication of micro/nano-textured surfaces , 2017 .

[166]  Moustafa N. Aboushelib,et al.  Influence of surface nano-roughness on osseointegration of zirconia implants in rabbit femur heads using selective infiltration etching technique. , 2013, The Journal of oral implantology.

[167]  R. Legeros,et al.  Properties of osteoconductive biomaterials: calcium phosphates. , 2002, Clinical orthopaedics and related research.

[168]  Liang Hao,et al.  Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development , 2009 .

[169]  Xibing Gong,et al.  Review on powder-based electron beam additive manufacturing technology , 2012 .

[170]  Y. Fukui,et al.  Hydroxyapatite coated dental implants by sputtering technique , 2006 .

[171]  Qi Ding,et al.  Effective solution for the tribological problems of Ti-6Al-4V: Combination of laser surface texturing and solid lubricant film , 2012 .

[172]  Changing surfaces—a theoretical and experimental approach , 2004 .

[173]  L. Murr,et al.  Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[174]  P. Wiles The surgery of the osteo‐arthritic hip , 1958, Clinical orthopaedics and related research.

[175]  Liam Blunt,et al.  Surface and form metrology of polished “freeform” biological surfaces , 2008 .

[176]  G. Song,et al.  Anodizing Treatments for Magnesium Alloys and Their Effect on Corrosion Resistance in Various Environments , 2006 .

[177]  J. Charnley,et al.  Total hip replacement by low-friction arthroplasty. , 1970, Clinical orthopaedics and related research.

[178]  C. Bünger,et al.  Hydroxyapatite coating enhances fixation of porous coated implants. A comparison in dogs between press fit and noninterference fit. , 1990, Acta orthopaedica Scandinavica.

[179]  V. K. Jain,et al.  Nanofinishing of freeform surfaces of prosthetic knee joint implant , 2012 .

[180]  Agostino G. Bruzzone,et al.  Advances in engineered surfaces for functional performance , 2008 .

[181]  Fritz Klocke,et al.  Ultrasonic-assisted diamond turning of glass and steel , 2000 .

[182]  S. Kurtz,et al.  Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. , 2007, The Journal of bone and joint surgery. American volume.

[183]  A. Batchelor,et al.  Hot Isostatic Pressing of Hydroxyapatite Coating for Improved Fretting Wear Resistance , 1998 .

[184]  J. Chevalier,et al.  Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. , 2002, Biomaterials.

[185]  B. Ngoi,et al.  Ultraprecision Diamond Turning of Glass with Ultrasonic Vibration , 2003 .

[186]  P. Pena,et al.  Vidrios y Vitrocerámicos Bioactivos , 2007 .

[187]  W. Soboyejo,et al.  Interactions between MC3T3-E1 cells and textured Ti6Al4V surfaces. , 2002, Journal of biomedical materials research.

[188]  A. Weckenmann,et al.  Probing Systems in Dimensional Metrology , 2004 .

[189]  J. Jansen,et al.  Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. , 1996, Biomaterials.

[190]  P. A. Dearnley,et al.  A brief review of test methodologies for surface-engineered biomedical implant alloys , 2005 .

[191]  Tzu-Sen Yang,et al.  Nanoporous biocompatible layer on Ti-6Al-4V alloys enhanced osteoblast-like cell response , 2013 .

[192]  M. Yoshinari,et al.  Influence of surface modifications to titanium on antibacterial activity in vitro. , 2001, Biomaterials.

[193]  A. Sarhan,et al.  Ultrasonic assisted grinding of advanced materials for biomedical and aerospace applications—a review , 2017 .

[194]  Geetha Manivasagam,et al.  Biomedical Implants: Corrosion and its Prevention - A Review~!2009-12-22~!2010-01-20~!2010-05-25~! , 2010 .

[195]  F. Klocke,et al.  Consolidation phenomena in laser and powder-bed based layered manufacturing , 2007 .

[196]  G. Winter,et al.  Corrosion of Orthopaedic Implants , 1959 .

[197]  M. Matlosz,et al.  An Impedance Study of Stainless Steel Electropolishing , 1993 .

[198]  A. Holmen,et al.  Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. , 2006, Biomaterials.

[199]  M. K. Herliansyah,et al.  Adhesion failure behavior of sputtered calcium phosphate thin film coatings evaluated using microscratch testing. , 2010, Journal of the mechanical behavior of biomedical materials.

[200]  H. E. Kim,et al.  Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. , 2000, Biomaterials.

[201]  M. Kannan,et al.  Enhancing the performance of calcium phosphate coating on a magnesium alloy for bioimplant applications , 2012 .

[202]  V. Saikko,et al.  A three-axis knee wear simulator with ball-on-flat contact , 2001 .

[203]  W. Soboyejo,et al.  An investigation of the initial attachment and orientation of osteoblast-like cells on laser grooved Ti-6Al-4V surfaces , 2009 .

[204]  M. Janal,et al.  Evaluation of surface roughness as a function of multiple blasting processing variables. , 2013, Clinical oral implants research.

[205]  J M Crolet,et al.  Biomechanical Compatibility and Design of Ceramic Implants for Orthopedic Surgery , 1988, Annals of the New York Academy of Sciences.

[206]  N. Loh,et al.  An overview of hot isostatic pressing , 1992 .

[207]  Fengzhou Fang,et al.  Manufacturing and measurement of freeform optics , 2013 .

[208]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[209]  Enrico Savio,et al.  Feature-oriented measurement strategy in atomic force microscopy , 2007 .

[210]  S. Paul,et al.  Performance of honed surface profiles to artificial hip joints: An experimental investigation , 2013 .

[211]  R. Singer,et al.  Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. , 2008, Acta biomaterialia.

[212]  Moustafa N. Aboushelib,et al.  Bonding to zirconia using a new surface treatment. , 2010, Journal of prosthodontics : official journal of the American College of Prosthodontists.

[213]  A R Boccaccini,et al.  Biomedical coatings on magnesium alloys - a review. , 2012, Acta biomaterialia.

[214]  V P Thompson,et al.  Effects of sandblasting and silica-coating procedures on pure titanium. , 1994, Journal of dentistry.

[215]  C. Ohtsuki,et al.  Review Paper: Behavior of Ceramic Biomaterials Derived from Tricalcium Phosphate in Physiological Condition , 2008, Journal of biomaterials applications.

[216]  G. Healy An experimental model for the endoscopic correction of subglottic stenosis with clinical applications , 1982, The Laryngoscope.

[217]  K. Seah,et al.  The influence of pore morphology on corrosion , 1998 .

[218]  David Anthony Barrow,et al.  Ceramic sol–gel composite coatings for electrical insulation , 2001 .

[219]  M. Niinomi Recent titanium R&D for biomedical applications in japan , 1999 .

[220]  Jochem Nagels,et al.  Stress shielding and bone resorption in shoulder arthroplasty. , 2003, Journal of shoulder and elbow surgery.

[221]  Rania M. Elbackly,et al.  In-vivo study of adhesion and bone growth around implanted laser groove/ RGD-functionalized Ti-6Al-4V pins in rabbit femurs , 2011 .

[222]  P. Corengia,et al.  Effect of surface treatments on the fatigue life of titanium for biomedical applications. , 2010, Journal of the mechanical behavior of biomedical materials.

[223]  P. N. Aza,et al.  Bioactive glasses and glass-ceramics , 2007 .

[224]  G. Purdy,et al.  Role of corrosion in Harrington and Luque rods failure. , 1989, Biomaterials.

[225]  P. Seitavuopio The roughness and imaging characterisation of different pharmaceutical surfaces , 2006 .

[226]  P. Roach,et al.  Modern biomaterials: a review—bulk properties and implications of surface modifications , 2007, Journal of materials science. Materials in medicine.

[227]  G. Thouas,et al.  Metallic implant biomaterials , 2015 .

[228]  J. Bronzino,et al.  Biomaterials : Principles and Applications , 2002 .

[229]  A. Nanci,et al.  Surface microtexturing of Ti–6Al–4V using an ultraviolet laser system , 2016 .

[230]  K. Rokosz,et al.  Co–Cr alloy corrosion behaviour after electropolishing and “magnetoelectropolishing” treatments , 2008 .

[231]  Maxence Bigerelle,et al.  The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. , 2000, Biomaterials.

[232]  H. Haefke,et al.  Enhanced corrosioon resistance by sol‐gel‐based ZrO2‐CeO2 coatings on magnesium alloys , 2005 .

[233]  Craig B. Arnold,et al.  Nano-second UV laser processed micro-grooves on Ti6Al4V for biomedical applications , 2009 .

[234]  Chad W. Schwietert,et al.  Biological roles of titanium , 2007, Biological Trace Element Research.

[235]  J. Pou,et al.  Micro- and nano-testing of calcium phosphate coatings produced by pulsed laser deposition. , 2003, Biomaterials.

[236]  I. Pais,et al.  Titanium as a new trace element , 1977 .

[237]  Larry L. Hench,et al.  An Introduction to Bioceramics , 2013 .

[238]  Mitsuo Niinomi,et al.  Recent metallic materials for biomedical applications , 2002 .

[239]  Jonathan C Knowles,et al.  Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants. , 2004, Biomaterials.

[240]  T. Kameyama Hybrid bioceramics with metals and polymers for better biomaterials , 1999 .

[241]  S. Muley,et al.  An assessment of ultra fine grained 316L stainless steel for implant applications. , 2016, Acta biomaterialia.

[242]  D. Chrisey,et al.  Pulsed laser deposition of hydroxylapatite thin films on Ti‐6Al‐4V , 1992 .

[243]  Michel A. Aegerter,et al.  Sol-Gel Technologies for Glass Producers and Users , 2011 .

[244]  E. Lautenschlager,et al.  In vitro corrosion fatigue of 316L cold worked stainless steel. , 1992, Journal of biomedical materials research.

[245]  Mitsuo Niinomi,et al.  Recent research and development in titanium alloys for biomedical applications and healthcare goods , 2003 .

[246]  F. Prima,et al.  Nanoindentation and XPS Studies of Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field , 2015, Materials.

[247]  Z. Mohammadi,et al.  Grit blasting of Ti–6Al–4V alloy: Optimization and its effect on adhesion strength of plasma-sprayed hydroxyapatite coatings , 2007 .

[248]  A. Matthews,et al.  Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis , 2000 .

[249]  A. Wennerberg The importance of surface roughness for implant incorporation , 1998 .

[250]  J. Evans,et al.  Electrophoretic Deposition of Hydroxyapatite Coatings on Metal Substrates: A Nanoparticulate Dual-Coating Approach , 2001 .

[251]  D. Aspinwall,et al.  Review on ultrasonic machining , 1998 .

[252]  Narendra B. Dahotre,et al.  Review paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering , 2005, Journal of biomaterials applications.

[253]  H. Aoki,et al.  Phase composition of sputtered films from a hydroxyapatite target , 2002 .

[254]  Tayyab I. Suratwala,et al.  Sol—gel derived coatings on glass , 1997 .

[255]  Julia C. Shelton,et al.  A hip simulator study of the influence of patient activity level on the wear of crosslinked polyethylene under smooth and roughened femoral conditions , 2001 .

[256]  P. McHugh,et al.  The influence of passivation and electropolishing on the performance of medical grade stainless steels in static and fatigue loading , 2005, Journal of materials science. Materials in medicine.

[257]  Thomas A. Dow,et al.  Review of vibration-assisted machining , 2008 .

[258]  Bernhard Mueller,et al.  Additive Manufacturing Technologies – Rapid Prototyping to Direct Digital Manufacturing , 2012 .

[259]  Zulfiqar Ahmad Khan,et al.  Manufacturing induced residual stress influence on the rolling contact fatigue life performance of lubricated silicon nitride bearing materials , 2007 .

[260]  S D Cook,et al.  Hydroxyapatite-coated porous titanium for use as an orthopedic biologic attachment system. , 1988, Clinical orthopaedics and related research.

[261]  M. K. Sinha,et al.  Nanoindentation study of microplasma sprayed hydroxyapatite coating , 2009 .

[262]  K. Rokosz,et al.  Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field , 2008 .

[263]  A. I. Muñoz,et al.  Effect of thermal treatment and applied potential on the electrochemical behaviour of CoCrMo biomedical alloy , 2009 .

[264]  A. Piattelli,et al.  Residual aluminum oxide on the surface of titanium implants has no effect on osseointegration. , 2003, Biomaterials.

[265]  P. Sioshansi,et al.  Surface treatment of biomaterials by ion beam processes , 1996 .

[266]  Avinash Kumar Agarwal,et al.  Chronology of Total Hip Joint Replacement and Materials Development , 2005 .

[267]  P. S. Walker,et al.  Biomechanics of Total Knee Replacement , 1987 .

[268]  Ann Wennerberg,et al.  A histomorghometric study of screw‐shaped and removal torque titanium implants with three different surface topographies , 1995 .

[269]  T. Nakagawa,et al.  Analysis of mirror surface generation of hard and brittle materials by ELID (electronic in-process dressing) grinding with superfine grain metallic bond wheels , 1995 .

[270]  J. Park,et al.  Engineering biocompatible implant surfaces , 2013 .

[271]  Ph. Bertrand,et al.  Parametric analysis of the selective laser melting process , 2007 .

[272]  M. Niinomi,et al.  Development of new metallic alloys for biomedical applications. , 2012, Acta biomaterialia.

[274]  C. Case,et al.  Widespread dissemination of metal debris from implants. , 1994, The Journal of bone and joint surgery. British volume.

[275]  L. Mohan,et al.  Corrosion behavior of titanium alloy Beta-21S coated with diamond like carbon in Hank's solution , 2012 .