A NEW APPLICATION OF p-ADIC ANALYSIS TO REPRESENTATION OF NUMBERS BY BINARY FORMS
暂无分享,去创建一个
[1] N. Fel'dman. A refinement of two effective inequalities of A. Baker , 1969 .
[2] A. Baker. Bounds for the solutions of the hyperelliptic equation , 1969, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] A. Baker,et al. Contributions to the theory of diophantine equations I. On the representation of integers by binary forms , 1968, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[4] A. Baker. Contributions to the theory of Diophantine equations II. The Diophantine equation y2 = x3+k , 1968, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[5] N I Fel'dman,et al. IMPROVED ESTIMATE FOR A LINEAR FORM OF THE LOGARITHMS OF ALGEBRAIC NUMBERS , 1968 .
[6] N. Fel'dman. ESTIMATE FOR A LINEAR FORM OF LOGARITHMS OF ALGEBRAIC NUMBERS , 1968 .
[7] Albert Baker,et al. Linear forms in the logarithms of algebraic numbers I - IV Mathematika 13 , 1967 .
[8] W. W. Adams. TRANSCENDENTAL NUMBERS IN THE P-ADIC DOMAIN. , 1966 .
[9] J. Cassels,et al. An Introduction to Diophantine Approximation , 1957 .
[10] K. Mahler. Zur Approximation algebraischer Zahlen. I , 1933 .
[11] K. Mahler. Zur Approximation algebraischer Zahlen. III. , 1933 .
[12] J. Coates. An effective p-adic analogue of a theorem of Thue , 1969 .
[13] A. Baker. The Diophantine Equation y2 = ax3+bx2+cx+d , 1968 .
[14] Axel Thue. Über Annäherungswerte algebraischer Zahlen. , 1909 .