Neurogeometry of color vision

In neurogeometry, principles of differential geometry and neuron dynamics are used to model the representation of forms in the primary visual cortex, V1. This approach is well-suited for explaining the perception of illusory contours such as Kanizsa's figure (see Petitot (2008) for a review). In its current version, neurogeometry uses achromatic inputs to the visual system as the starting-point for form estimation. Here we ask how neurogeometry operates when the input is chromatic as in color vision. We propose that even when considering only the perception of form, the random nature of the cone mosaic must be taken into account. The main challenge for neurogeometry is to explain how achromatic information could be estimated from the sparse chromatic sampling provided by the cone mosaic. This article also discusses the non-linearity involved in a neural geometry for chromatic processing. We present empirical results on color discrimination to illustrate the geometric complexity for the discrimination contour when the adaptation state of the observer is not conditioned. The underlying non-linear geometry must conciliate both mosaic sampling and regulation of visual information in the visual system.

[1]  J. Petitot The neurogeometry of pinwheels as a sub-Riemannian contact structure , 2003, Journal of Physiology-Paris.

[2]  D. Baylor,et al.  Single-photon detection by rod cells of the retina , 1998 .

[3]  B. Wandell,et al.  Trichromatic opponent color classification , 1999, Vision Research.

[4]  M. Webster,et al.  Changes in colour appearance following post-receptoral adaptation , 1991, Nature.

[5]  C. R. Ingling,et al.  The spatiotemporal properties of the r-g X-cell channel , 1985, Vision Research.

[6]  K. Mullen,et al.  Estimation of the L-, M-, and S-cone weights of the postreceptoral detection mechanisms , 1996 .

[7]  S. Grossberg,et al.  The watercolor illusion and neon color spreading: a unified analysis of new cases and neural mechanisms. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  J. Mollon,et al.  The spatial arrangement of cones in the primate fovea , 1992, Nature.

[9]  M. A. Bouman,et al.  Opponent color coding: A mechanistic model and a new metric for color space , 1972, Kybernetik.

[10]  K. Mullen,et al.  Separating colour and luminance information in the visual system. , 1995, Spatial vision.

[11]  K. Naka,et al.  S‐potentials from colour units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[12]  Barry B. Lee,et al.  Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency , 1996, Science.

[13]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[14]  D. Dacey Primate retina: cell types, circuits and color opponency , 1999, Progress in Retinal and Eye Research.

[15]  R. Marrocco,et al.  On luminance additivity and related topics. , 1969, Vision research.

[16]  W. Stiles A modified Helmholtz line-element in brightness-colour space , 1946 .

[17]  Jan J. Koenderink,et al.  Color for the Sciences , 2010 .

[18]  J. P. Benzécri La vision des couleurs , 1981 .

[19]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[20]  Friedhelm Caspers Basic concepts II , 1991 .

[21]  D. Mumford Elastica and Computer Vision , 1994 .

[22]  S. L. Guth,et al.  Heterochromatic additivity, foveal spectral sensitivity, and a new color model. , 1973, Journal of the Optical Society of America.

[23]  I. Daubechies,et al.  Wavelets on irregular point sets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  J. J. Koenderink,et al.  Models of retinal signal processing at high luminances , 1970, Kybernetik.

[25]  Jay Neitz,et al.  What determines unique yellow, L/M cone ratio or visual experience? , 2002, Other Conferences.

[26]  Angela M. Brown,et al.  Higher order color mechanisms , 1986, Vision Research.

[27]  J. Neitz,et al.  Cone pigment gene expression in individual photoreceptors and the chromatic topography of the retina. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  David Alleysson,et al.  Hue discrimination, unique hues and naming. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  Sabine Süsstrunk,et al.  Effects of motion and configural complexity on color transparency perception , 2006, Visual Neuroscience.

[30]  T. Sejnowski,et al.  Cone selectivity derived from the responses of the retinal cone mosaic to natural scenes. , 2007, Journal of vision.

[31]  Qasim Zaidi,et al.  Adaptive orthogonalization of opponent-color signals , 1993, Biological Cybernetics.

[32]  H. V. Velden Over het aantal lichtquanta dat nodig is voor een lichtprikkel bij het menselijk oog , 1944 .

[33]  M L Courage,et al.  Human newborn color vision: measurement with chromatic stimuli varying in excitation purity. , 1998, Journal of experimental child psychology.

[34]  Katja Doerschner,et al.  Color constancy and hue scaling. , 2006, Journal of vision.

[35]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[36]  J. J. Vos,et al.  An analytical description of the line element in the zone-fluctuation model of colour vision. I. Basic concepts. , 1972, Vision research.

[37]  Christopher E. Macann,et al.  The Physiology and Phenomenology of Action , 2008 .

[38]  A. Rose The sensitivity performance of the human eye on an absolute scale. , 1948, Journal of the Optical Society of America.

[39]  Sabine Süsstrunk,et al.  Spatio-Chromatic PCA of a Mosaiced Color Image , 2004, CGIV.

[40]  Eberhart Zrenner,et al.  The Subretinal Implant: Can Microphotodiode Arrays Replace Degenerated Retinal Photoreceptors to Restore Vision? , 2002, Ophthalmologica.

[41]  B. Silverman,et al.  Wavelets: The Key to Intermittent Information? , 2000 .

[42]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[43]  Laurence Meylan,et al.  Model of retinal local adaptation for the tone mapping of color filter array images. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[44]  E Baumgardt IV. Théories quantiques de la vision , 1948 .

[45]  David Williams,et al.  Color Perception Is Mediated by a Plastic Neural Mechanism that Is Adjustable in Adults , 2002, Neuron.

[46]  J. J. Koenderink,et al.  Models of the processing of quantum signals by the human peripheral retina , 1970, Kybernetik.

[47]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[48]  Li Zhaoping,et al.  The distribution of visual objects on the retina: connecting eye movements and cone distributions. , 2003, Journal of vision.

[49]  Jay Neitz,et al.  An urn model of the development of L/M cone ratios in human and macaque retinas , 2006, Visual Neuroscience.

[50]  R. L. Valois,et al.  A multi-stage color model , 1993, Vision Research.

[51]  J. Neitz,et al.  Variations in cone populations for red–green color vision examined by analysis of mRNA , 1998, Neuroreport.

[52]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  E. Schrödinger Grundlinien einer Theorie der Farbenmetrik im Tagessehen , 1920 .

[54]  E. Callaway,et al.  Parallel colour-opponent pathways to primary visual cortex , 2003, Nature.

[55]  Gustav Theodor Fechner,et al.  Elemente der Psychophysik / vol. 1 , 1889 .

[56]  D. Baylor,et al.  Responses of retinal rods to single photons. , 1979, The Journal of physiology.

[57]  Zhaoping Li,et al.  Understanding cone distributions from saccadic dynamics. Is information rate maximised? , 2004, Neurocomputing.

[58]  David Alleysson Spatially coherent colour image reconstruction from a trichromatic mosaic with random arrangement of chromatic samples , 2010, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[59]  Stéphane Mallat,et al.  A review of Bandlet methods for geometrical image representation , 2007, Numerical Algorithms.

[60]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[61]  J. Pokorny,et al.  Chromatic discrimination with variation in chromaticity and luminance: Data and theory , 1993, Vision Research.

[62]  Donald I. A. MacLeod,et al.  The pleistochrome: optimal opponent codes for natural colours , 2003 .

[63]  BouguerPierre Essai d'Optique sur la Gradation de la Lumière , 1922 .

[64]  L. Maloney Physics-based approaches to modeling surface color perception , 1999 .

[65]  Sabine Süsstrunk,et al.  Linear demosaicing inspired by the human visual system , 2005, IEEE Transactions on Image Processing.

[66]  B A Wandell,et al.  Measurement of small color differences. , 1982, Psychological review.

[67]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[68]  R. Massof,et al.  Vector model for normal and dichromatic color vision. , 1980, Journal of the Optical Society of America.

[69]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[70]  Maarten A Bouman Spatiotemporal configuration dependent pairing of nerve events in dark-adapted human vision. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[71]  Laurence T. Maloney,et al.  Assertion : Two Methods for Calibrating a Linear Visual System , 2007 .

[72]  Peter Sterling,et al.  Evidence that Circuits Review for Spatial and Color Vision Segregate at the First Retinal Synapse , 1999 .

[73]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[74]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[75]  David J. Calkins,et al.  Evidence that Circuits for Spatial and Color Vision Segregate at the First Retinal Synapse , 1999, Neuron.

[76]  J. Hérault,et al.  Variability in color discrimination data explained by a generic model with nonlinear and adaptive processing , 2001 .

[77]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[78]  Paul R. Martin,et al.  Evidence that Blue‐on Cells are Part of the Third Geniculocortical Pathway in Primates , 1997, The European journal of neuroscience.

[79]  Maarten A. Bouman,et al.  The simple perfection of quantum correlation in human vision , 2006, Progress in Neurobiology.

[80]  J J Koenderink,et al.  Sensitivity to spatiotemporal combined luminance and chromaticity contrast. , 1981, Journal of the Optical Society of America.

[81]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[82]  P. Veenhuis The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics , 1995 .

[83]  J. Koenderink,et al.  Spatial and temporal discrimination ellipsoids in color space. , 1983, Journal of the Optical Society of America.

[84]  Steven K Shevell,et al.  What kinds of contours bound the reach of filled-in color? , 2011, Journal of vision.

[85]  D. L. Macadam Visual Sensitivities to Color Differences in Daylight , 1942 .

[86]  David L. MacAdam,et al.  The distribution of color matchings around a color center , 1945 .

[87]  William C. Hoffman,et al.  Some Reasons Why Algebraic Topology is Important in Neuropsychology: Perceptual and Cognitive Systems as Fibrations , 1985, Int. J. Man Mach. Stud..

[88]  Sabine Süsstrunk,et al.  On Adaptive Non-Linearity for Color Discrimination and Chromatic Adaptation , 2002, CGIV.

[89]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[90]  J D Mollon,et al.  Parafoveal color discrimination: a chromaticity locus of enhanced discrimination. , 2011, Journal of vision.

[91]  Mark D. Fairchild,et al.  Color Appearance Models , 1997, Computer Vision, A Reference Guide.

[92]  W. McIlhagga,et al.  Detection mechanisms in L-, M-, and S-cone contrast space. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[93]  H. Vries The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye , 1943 .

[94]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.