Functional modeling of the human auditory brainstem response to broadband stimulation.

Population responses such as the auditory brainstem response (ABR) are commonly used for hearing screening, but the relationship between single-unit physiology and scalp-recorded population responses are not well understood. Computational models that integrate physiologically realistic models of single-unit auditory-nerve (AN), cochlear nucleus (CN) and inferior colliculus (IC) cells with models of broadband peripheral excitation can be used to simulate ABRs and thereby link detailed knowledge of animal physiology to human applications. Existing functional ABR models fail to capture the empirically observed 1.2-2 ms ABR wave-V latency-vs-intensity decrease that is thought to arise from level-dependent changes in cochlear excitation and firing synchrony across different tonotopic sections. This paper proposes an approach where level-dependent cochlear excitation patterns, which reflect human cochlear filter tuning parameters, drive AN fibers to yield realistic level-dependent properties of the ABR wave-V. The number of free model parameters is minimal, producing a model in which various sources of hearing-impairment can easily be simulated on an individualized and frequency-dependent basis. The model fits latency-vs-intensity functions observed in human ABRs and otoacoustic emissions while maintaining rate-level and threshold characteristics of single-unit AN fibers. The simulations help to reveal which tonotopic regions dominate ABR waveform peaks at different stimulus intensities.

[1]  M. Ruggero,et al.  Basilar-membrane responses to clicks at the base of the chinchilla cochlea. , 1998, The Journal of the Acoustical Society of America.

[2]  Muhammad S A Zilany,et al.  Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. , 2006, The Journal of the Acoustical Society of America.

[3]  T. Yin,et al.  Responses to amplitude-modulated tones in the auditory nerve of the cat. , 1992, The Journal of the Acoustical Society of America.

[4]  Terence W Picton,et al.  Human temporal auditory acuity as assessed by envelope following responses. , 2004, The Journal of the Acoustical Society of America.

[5]  S. Neely,et al.  Latency of tone-burst-evoked auditory brain stem responses and otoacoustic emissions: level, frequency, and rise-time effects. , 2013, The Journal of the Acoustical Society of America.

[6]  Robert A. Levine,et al.  Brainstem Auditory Evoked Potentials Suggest a Role for the Ventral Cochlear Nucleus in Tinnitus , 2012, Journal of the Association for Research in Otolaryngology.

[7]  C. Shera,et al.  Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics. , 2001, The Journal of the Acoustical Society of America.

[8]  N. Kiang,et al.  Generators of the brainstem auditory evoked potential in cat III: identified cell populations , 1996, Hearing Research.

[9]  Giovanni Vannucci,et al.  Effects of rate variation on the counting statistics of dead-time-modified Poisson processes , 1978 .

[10]  G. Zweig,et al.  Finding the impedance of the organ of Corti. , 1991, The Journal of the Acoustical Society of America.

[11]  C. Abdala,et al.  Frequency contribution to the click-evoked auditory brain-stem response in human adults and infants. , 1995, The Journal of the Acoustical Society of America.

[12]  E Arslan,et al.  Prediction of auditory brainstem wave V latency as a diagnostic tool of sensorineural hearing loss. , 1987, Audiology : official organ of the International Society of Audiology.

[13]  Carolyn J. Brown,et al.  Electrically evoked auditory brainstem response: Growth of response with current level , 1991, Hearing Research.

[14]  J. Parmanen Some Reasons to Revise the International Standard ISO 226:2003: Acoustics—Normal Equal-Loudness-Level Contours , 2012 .

[15]  R. Meddis Simulation of mechanical to neural transduction in the auditory receptor. , 1986, The Journal of the Acoustical Society of America.

[16]  P. Sellick,et al.  The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea , 1980, Hearing Research.

[17]  P. Voordecker,et al.  Selective unilateral absence or attenuation of wave V of brain-stem auditory evoked potentials with intrinsic brain-stem lesions. , 1988, Archives of neurology.

[18]  Ray Meddis,et al.  A revised model of the inner-hair cell and auditory-nerve complex. , 2002, The Journal of the Acoustical Society of America.

[19]  I. J. Russell,et al.  The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro , 1986, Hearing Research.

[20]  D. D. Greenwood Critical Bandwidth and the Frequency Coordinates of the Basilar Membrane , 1961 .

[21]  B Kollmeier,et al.  Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion. , 2000, The Journal of the Acoustical Society of America.

[22]  Ian C. Bruce,et al.  Auditory nerve model for predicting performance limits of normal and impaired listeners , 2001 .

[23]  Jean-Luc Puel,et al.  Contribution of auditory nerve fibers to compound action potential of the auditory nerve. , 2014, Journal of neurophysiology.

[24]  E. Lopez-Poveda,et al.  A Biophysical Model of the Inner Hair Cell: The Contribution of Potassium Currents to Peripheral Auditory Compression , 2006, Journal of the Association for Research in Otolaryngology.

[25]  M. Liberman,et al.  Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? , 2014, Journal of neurophysiology.

[26]  Hari M. Bharadwaj,et al.  Individual Differences Reveal Correlates of Hidden Hearing Deficits , 2015, The Journal of Neuroscience.

[27]  M. Liberman,et al.  Response properties of single auditory nerve fibers in the mouse. , 2005, Journal of neurophysiology.

[28]  Enrique A. Lopez-Poveda,et al.  Isoresponse Versus Isoinput Estimates of Cochlear Filter Tuning , 2011, Journal of the Association for Research in Otolaryngology.

[29]  Y. Okada,et al.  Genesis of MEG signals in a mammalian CNS structure. , 1997, Electroencephalography and clinical neurophysiology.

[30]  Laurel H Carney,et al.  Analysis of models for the synapse between the inner hair cell and the auditory nerve. , 2005, The Journal of the Acoustical Society of America.

[31]  G. Zweig,et al.  A symmetry suppresses the cochlear catastrophe. , 1991, The Journal of the Acoustical Society of America.

[32]  R. Burkard Human Auditory Evoked Potentials , 2010 .

[33]  Laszlo Stein ELECTROPHYSIOLOGICAL TECHNIQUES IN AUDIOLOGY AND OTOLOGY , 1988 .

[34]  Sunil Puria,et al.  Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. , 2003, The Journal of the Acoustical Society of America.

[35]  M. Liberman,et al.  Primary Neural Degeneration in the Guinea Pig Cochlea After Reversible Noise-Induced Threshold Shift , 2011, Journal of the Association for Research in Otolaryngology.

[36]  Torsten Dau,et al.  Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. , 2012, The Journal of the Acoustical Society of America.

[37]  D W Worthington,et al.  Some Comparisons between Auditory Brain Stem Response Thresholds, Latencies, and the Pure‐Tone Audiogram , 1985, Ear and hearing.

[38]  E. Lopez-Poveda,et al.  Cochlear nonlinearity in normal-hearing subjects as inferred psychophysically and from distortion-product otoacoustic emissions. , 2008, The Journal of the Acoustical Society of America.

[39]  Alessandro Altoè,et al.  Transmission line cochlear models: improved accuracy and efficiency. , 2014, The Journal of the Acoustical Society of America.

[40]  Andrew J. Oxenham,et al.  Estimates of Human Cochlear Tuning at Low Levels Using Forward and Simultaneous Masking , 2003, Journal of the Association for Research in Otolaryngology.

[41]  M. Don,et al.  Evaluating auditory brainstem responses to different chirp stimuli at three levels of stimulation. , 2010, The Journal of the Acoustical Society of America.

[42]  Relating the Variability of Tone-Burst Otoacoustic Emission and Auditory Brainstem Response Latencies to the Underlying Cochlear Mechanics. , 2015, AIP conference proceedings.

[43]  Christopher A Shera,et al.  Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Torsten Dau,et al.  Temporal suppression of the click-evoked otoacoustic emission level-curve. , 2011, The Journal of the Acoustical Society of America.

[45]  Andrew J. Oxenham,et al.  Otoacoustic Estimation of Cochlear Tuning: Validation in the Chinchilla , 2010, Journal of the Association for Research in Otolaryngology.

[46]  日本規格協会 Acoustics : normal equal-loudness-level contours = 音響 : 正常な音の大きさの等感曲線 , 2004 .

[47]  S. Neely,et al.  Low-frequency and high-frequency cochlear nonlinearity in humans. , 2007, The Journal of the Acoustical Society of America.

[48]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[49]  Ze D Jiang,et al.  Brainstem auditory evoked responses from birth to adulthood: Normative data of latency and interval , 1991, Hearing Research.

[50]  M. Liberman,et al.  Auditory-nerve response from cats raised in a low-noise chamber. , 1978, The Journal of the Acoustical Society of America.

[51]  M Don,et al.  Analysis of the click-evoked brainstem potentials in man unsing high-pass noise masking. , 1978, The Journal of the Acoustical Society of America.

[52]  P M Sellick,et al.  Low‐frequency characteristics of intracellularly recorded receptor potentials in guinea‐pig cochlear hair cells. , 1983, The Journal of physiology.

[53]  T. Dau,et al.  A computational model of human auditory signal processing and perception. , 2008, The Journal of the Acoustical Society of America.

[54]  W. S. Rhode,et al.  Basilar membrane responses to broadband stimuli. , 2000, The Journal of the Acoustical Society of America.

[55]  Robert D Frisina,et al.  Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement , 1990, Hearing Research.

[56]  J. Allen,et al.  Cochlear micromechanics--a physical model of transduction. , 1980, The Journal of the Acoustical Society of America.

[57]  Brian R Glasberg,et al.  Derivation of auditory filter shapes from notched-noise data , 1990, Hearing Research.

[58]  L. Robles,et al.  Basilar-membrane responses to tones at the base of the chinchilla cochlea. , 1997, The Journal of the Acoustical Society of America.

[59]  M. Liberman,et al.  Adding Insult to Injury: Cochlear Nerve Degeneration after “Temporary” Noise-Induced Hearing Loss , 2009, The Journal of Neuroscience.

[60]  T. F. Weiss,et al.  A comparison of synchronization filters in different auditory receptor organs , 1988, Hearing Research.

[61]  E. Gundelfinger,et al.  Onset Coding Is Degraded in Auditory Nerve Fibers from Mutant Mice Lacking Synaptic Ribbons , 2010, The Journal of Neuroscience.

[62]  Laurel H. Carney,et al.  The Spontaneous-Rate Histogram of the Auditory Nerve Can Be Explained by Only Two or Three Spontaneous Rates and Long-Range Dependence , 2005, Journal of the Association for Research in Otolaryngology.

[63]  J. Eggermont,et al.  Auditory Evoked Potentials: Basic Principles and Clinical Application , 2006 .

[64]  Torsten Dau,et al.  Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity. , 2009, Journal of the Acoustical Society of America.

[65]  Torsten Dau,et al.  Modeling auditory evoked brainstem responses to transient stimuli. , 2012, The Journal of the Acoustical Society of America.

[66]  M. Liberman,et al.  Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. , 2013, Journal of neurophysiology.

[67]  C. Schreiner,et al.  Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. , 1988, Journal of neurophysiology.

[68]  L. Carney,et al.  A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. , 2004, The Journal of the Acoustical Society of America.

[69]  T. Dau The importance of cochlear processing for the formation of auditory brainstem and frequency following responses. , 2003, The Journal of the Acoustical Society of America.

[70]  D. McAlpine,et al.  Tinnitus with a Normal Audiogram: Physiological Evidence for Hidden Hearing Loss and Computational Model , 2011, The Journal of Neuroscience.

[71]  W. S. Rhode,et al.  Encoding of amplitude modulation in the cochlear nucleus of the cat. , 1994, Journal of neurophysiology.

[72]  M. Liberman,et al.  Afferent and efferent innervation of the cat cochlea: Quantitative analysis with light and electron microscopy , 1990, The Journal of comparative neurology.

[73]  Ray Meddis,et al.  A nonlinear filter-bank model of the guinea-pig cochlear nerve: rate responses. , 2003, The Journal of the Acoustical Society of America.

[74]  M. Sachs,et al.  Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. , 1974, The Journal of the Acoustical Society of America.

[75]  W. S. Rhode,et al.  Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers , 1985, Hearing Research.

[76]  D. Oertel,et al.  Use of brain slices in the study of the auditory system: spatial and temporal summation of synaptic inputs in cells in the anteroventral cochlear nucleus of the mouse. , 1985, The Journal of the Acoustical Society of America.

[77]  L. Carney,et al.  A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. , 2001, The Journal of the Acoustical Society of America.

[78]  Thomas F. Weiss,et al.  Hydrodynamic forces on hair bundles at high frequencies , 1990, Hearing Research.

[79]  L. A. Westerman,et al.  A diffusion model of the transient response of the cochlear inner hair cell synapse. , 1988, The Journal of the Acoustical Society of America.

[80]  W Jesteadt,et al.  Latency of auditory brain-stem responses and otoacoustic emissions using tone-burst stimuli. , 1988, The Journal of the Acoustical Society of America.

[81]  T W Picton,et al.  Auditory evoked potentials from the human cochlea and brainstem. , 1981, The Journal of otolaryngology. Supplement.

[82]  John J. Guinan,et al.  How are inner hair cells stimulated? Evidence for multiple mechanical drives , 2012, Hearing Research.

[83]  J. Guinan,et al.  Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. , 1999, The Journal of the Acoustical Society of America.

[84]  Ian C. Bruce,et al.  Effects of Peripheral Tuning on the Auditory Nerve’s Representation of Speech Envelope and Temporal Fine Structure Cues , 2010 .

[85]  A. Palmer,et al.  Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells , 1986, Hearing Research.

[86]  Laurel H Carney,et al.  A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. , 2009, The Journal of the Acoustical Society of America.

[87]  Erin S. Maloff,et al.  A Comparison of Auditory Brain Stem Responses Elicited by Click and Chirp Stimuli in Adults With Normal Hearing and Sensory Hearing Loss , 2014, Ear and hearing.

[88]  Hari M. Bharadwaj,et al.  Cochlear neuropathy and the coding of supra-threshold sound , 2014, Front. Syst. Neurosci..

[89]  J S Gravel,et al.  The Relationship between Loudness Intensity Functions and the Click‐ABR Wave V Latency , 1997, Ear and hearing.

[90]  M. Liberman,et al.  Age-Related Cochlear Synaptopathy: An Early-Onset Contributor to Auditory Functional Decline , 2013, The Journal of Neuroscience.

[91]  B. Delgutte,et al.  Neural coding of the temporal envelope of speech : Relation to modulation transfer functions , 2001 .

[92]  L. Robles,et al.  Mechanics of the mammalian cochlea. , 2001, Physiological reviews.

[93]  C E Schreiner,et al.  Neural processing of amplitude-modulated sounds. , 2004, Physiological reviews.

[94]  J. Rinzel,et al.  A biophysical model of cochlear processing: intensity dependence of pure tone responses. , 1986, The Journal of the Acoustical Society of America.

[95]  Laurel H Carney,et al.  Updated parameters and expanded simulation options for a model of the auditory periphery. , 2014, The Journal of the Acoustical Society of America.

[96]  D. M. Freeman,et al.  Hydrodynamic forces on hair bundles at low frequencies , 1990, Hearing Research.

[97]  C W Ponton,et al.  Auditory Brain Stem Response Generation by Parallel Pathways: Differential Maturation of Axonal Conduction Time and Synaptic Transmission , 1996, Ear and hearing.

[98]  J. Doucet,et al.  Recovery from prior stimulation. I: Relationship to spontaneous firing rates of primary auditory neurons , 1991, Hearing Research.

[99]  M. Semple,et al.  Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus. , 2000, Journal of neurophysiology.