Solving a linear conservation law subject to initial and final conditions
暂无分享,去创建一个
[1] R. Rogers,et al. An introduction to partial differential equations , 1993 .
[2] Thaddeus Beier,et al. Feature-based image metamorphosis , 1992, SIGGRAPH.
[3] Bertrand Delhay. Estimation spatio-temporelle de mouvement et suivi de structures déformables : application à l'imagerie dynamique du coeur et du thorax , 2006 .
[4] Patrick Clarysse,et al. Incorporating Low-Level Constraints for the Retrieval of Personalised Heart Models from Dynamic MRI , 2010, STACOM/CESC.
[5] Patrick Clarysse,et al. A new singular perturbation approach for image segmentation tracking , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.
[6] Patrick Clarysse,et al. Mapping Displacement and Deformation of the Heart With Local Sine-Wave Modeling , 2010, IEEE Transactions on Medical Imaging.
[7] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[8] Patrick Clarysse,et al. Optimal extended optical flow and statistical constraints: A result of convergence , 2011, J. Comput. Appl. Math..
[9] Yiannis Aloimonos,et al. The Statistics of Optical Flow , 2001, Comput. Vis. Image Underst..
[10] M. Rumpf,et al. Morphological image sequence processing , 2004 .
[11] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[12] Stephen L. Keeling,et al. Medical Image Registration and Interpolation by Optical Flow with Maximal Rigidity , 2005, Journal of Mathematical Imaging and Vision.
[13] René Vidal,et al. A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation and Estimation , 2006, Journal of Mathematical Imaging and Vision.
[14] H Handels,et al. Structure-preserving Interpolation of Temporal and Spatial Image Sequences Using an Optical Flow-based Method , 2007, Methods of Information in Medicine.
[15] Paul F. Whelan,et al. Segmentation of the Left Ventricle of the Heart in 3-D+t MRI Data Using an Optimized Nonrigid Temporal Model , 2008, IEEE Transactions on Medical Imaging.
[16] Bernard Bayle,et al. A visual 3D-tracking and positioning technique for stereotaxy with CT scanners , 2008, Robotics Auton. Syst..
[17] Pascal Azerad. Analyse des équations de Navier-Stokes en bassin peu profond et de l'équation de transport , 1996 .
[18] Julien Straubhaar,et al. Preconditioners for the conjugate gradient algorithm using Gram–Schmidt and least squares methods , 2007, Int. J. Comput. Math..
[19] Julien Straubhaar. Parallel preconditioners for the conjugate gradient algorithm using Gram-Schmidt and least squares methods , 2008, Parallel Comput..
[20] H Handels,et al. Motion Artifact Reducing Reconstruction of 4D CT Image Data for the Analysis of Respiratory Dynamics , 2007, Methods of Information in Medicine.
[21] Patrick Clarysse,et al. Two-dimensional spatial and temporal displacement and deformation field fitting from cardiac magnetic resonance tagging , 2000, Medical Image Anal..
[22] George Wolberg,et al. Recent advances in image morphing , 1996, Proceedings of CG International '96.
[23] Jérôme Pousin,et al. Inégalité de Poincaré courbe pour le traitement variationnel de l'équation de transport , 1996 .
[24] Rachid Deriche,et al. Computing Optical Flow via Variational Techniques , 1999, SIAM J. Appl. Math..
[25] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[26] O. Axelsson. Iterative solution methods , 1995 .
[27] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[28] Christof Eck,et al. Unilateral Contact Problems: Variational Methods and Existence Theorems , 2005 .
[29] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[30] Florentin Wörgötter,et al. Statistics of optic flow for self-motion through natural scenes , 2004 .
[31] Giuseppe Maria Coclite,et al. On the Boundary Control of Systems of Conservation Laws , 2002, SIAM J. Control. Optim..
[32] Michele Benzi,et al. A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..
[33] Olivier Besson,et al. Solutions for Linear Conservation Laws with Velocity Fields in $$L^{\rm \infty}$$ , 2007 .
[34] Hermano Frid,et al. Divergence‐Measure Fields and Hyperbolic Conservation Laws , 1999 .
[35] BeierThaddeus,et al. Feature-based image metamorphosis , 1992 .
[36] Olivier Besson,et al. Space–time integrated least squares: a time‐marching approach , 2004 .
[37] Michael J. Black,et al. On the Spatial Statistics of Optical Flow , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.