Nuclear Coupling and Polarization in Molecular Transport Junctions: Beyond Tunneling to Function

Much current experimental research on transport in molecular junctions focuses on finite voltages, where substantial polarization-induced nonlinearities may result in technologically relevant device-type responses. Because molecules have strong polarization responses to changing charge state or external field, molecules isolated between electrodes can show strongly nonlinear current-voltage responses. For small applied voltages (up to ∼0.3 volt), weak interaction between transporting electrons and molecular vibrations provides the basis for inelastic electron tunneling spectroscopy. At higher voltages and for certain time scale regimes, strong coupling effects occur, including Coulomb blockade, negative differential resistance, dynamical switching and switching noise, current hysteresis, heating, and chemical reactions. We discuss a general picture for such phenomena that arise from charging, strong correlation, and polarization (electronic and vibrational) effects in the molecule and at the interface.

[1]  Xiaoyin Xiao,et al.  Redox-gated electron transport in electrically wired ferrocene molecules , 2006 .

[2]  D. Allara,et al.  Single-molecule electrical junctions. , 2006, Annual review of physical chemistry.

[3]  Shot noise in parallel wires , 2004, cond-mat/0402180.

[4]  J. Ciszek,et al.  Electrochemical origin of voltage-controlled molecular conductance switching. , 2006, Journal of the American Chemical Society.

[5]  A. Troisi,et al.  Vibronic effects in off-resonant molecular wire conduction , 2003 .

[6]  James M Tour,et al.  Reversible bistable switching in nanoscale thiol-substituted oligoaniline molecular junctions. , 2005, Nano letters.

[7]  G. Fagas,et al.  Independent particle descriptions of tunneling using the many-body quantum transport approach , 2006 .

[8]  Konstantin K. Likharev,et al.  Single-electron devices and their applications , 1999, Proc. IEEE.

[9]  Current fluctuations of polymeric chains , 2003, cond-mat/0308426.

[10]  H. B. Weber,et al.  Statistical analysis of single-molecule junctions. , 2004, Angewandte Chemie.

[11]  Daniel J. Fuchs,et al.  Molecular engineering and measurements to test hypothesized mechanisms in single molecule conductance switching. , 2006, Journal of the American Chemical Society.

[12]  M. Ratner,et al.  Electron Transport in Molecular Wire Junctions , 2003, Science.

[13]  Super-Poissonian noise, negative differential conductance, and relaxation effects in transport through molecules, quantum dots, and nanotubes , 2004, cond-mat/0406647.

[14]  J. Ciszek,et al.  Three-terminal devices to examine single-molecule conductance switching. , 2006, Nano letters.

[15]  J. Thijssen,et al.  Temperature Dependence of Three-Terminal Molecular Junctions with Sulfur End-Functionalized Tercyclohexylidenes , 2006 .

[16]  E. Yablonovitch The Chemistry of Solid-State Electronics , 1989, Science.

[17]  Yi Luo,et al.  Spiers Memorial Lecture. Molecular mechanics and molecular electronics. , 2006, Faraday discussions.

[18]  Giorgos Fagas,et al.  Introducing Molecular Electronics: A brief overview , 2006 .

[19]  M. Ratner,et al.  Hysteresis, switching, and negative differential resistance in molecular junctions: a polaron model. , 2005, Nano letters.

[20]  M. Ratner,et al.  Tunneling Time for Electron Transfer Reactions , 2000 .

[21]  M. Paulsson,et al.  Inelastic transport through molecules: comparing first-principles calculations to experiments. , 2006, Nano letters.

[22]  A. Troisi,et al.  Modeling the Inelastic Electron Tunneling Spectra of Molecular Wire Junctions , 2005 .

[23]  D. Schwarzer,et al.  Intramolecular vibrational energy redistribution in bridged azulene-anthracene compounds: ballistic energy transport through molecular chains. , 2004, The Journal of chemical physics.

[24]  N. Hush,et al.  Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold. , 2006, The Journal of chemical physics.

[25]  Mark A. Ratner,et al.  Inelastic tunneling effects on noise properties of molecular junctions , 2006, cond-mat/0604029.

[26]  Forrest L. Carter,et al.  Molecular level fabrication techniques and molecular electronic devices , 1983 .

[27]  Probing electronic excitations in molecular conduction , 2005, cond-mat/0505375.

[28]  Hans Kuhn,et al.  Systems of Monomolecular Layers—Assembling and Physico‐Chemical Behavior , 1971 .

[29]  M. Ratner,et al.  Inelastic electron tunneling spectroscopy in molecular junctions: peaks and dips. , 2004, Journal of Chemical Physics.

[30]  Y. Blanter,et al.  Shot noise in mesoscopic conductors , 1999, cond-mat/9910158.

[31]  N. Hush,et al.  Molecular origins of conduction channels observed in shot-noise measurements. , 2006, Nano letters.

[32]  Ho,et al.  Single-molecule vibrational spectroscopy and microscopy , 1998, Science.

[33]  Phonon driven nonlinear electrical behavior in molecular devices. , 2007, Physical review letters.

[34]  A. Troisi,et al.  Molecular transport junctions: Propensity rules for inelastic electron tunneling spectra. , 2006, Nano letters.

[35]  A. Nitzan,et al.  Thermal conductance through molecular wires , 2003, physics/0306187.

[36]  Negative differential resistance in a bilayer molecular junction , 2003 .

[37]  S. J. van der Molen,et al.  One-way optoelectronic switching of photochromic molecules on gold. , 2003, Physical review letters.

[38]  J. Ciszek,et al.  Effects of hydration on molecular junction transport , 2006, Nature materials.

[39]  Yukio Imanishi,et al.  A Molecular Photodiode System That Can Switch Photocurrent Direction , 2004, Science.

[40]  Mark A. Ratner,et al.  Molecular transport junctions: vibrational effects , 2006 .

[41]  Mark A. Reed,et al.  Inelastic Electron Tunneling Spectroscopy of an Alkanedithiol Self-Assembled Monolayer , 2004 .

[42]  T. Seideman,et al.  Current-driven dynamics in molecular-scale devices , 2003 .

[43]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[44]  E. Osorio,et al.  Addition Energies and Vibrational Fine Structure Measured in Electromigrated Single‐Molecule Junctions Based on an Oligophenylenevinylene Derivative , 2007 .

[45]  Hong Guo,et al.  Ab initio analysis of electron-phonon coupling in molecular devices. , 2005, Physical review letters.

[46]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[47]  Ralph G. Nuzzo,et al.  Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface , 1985 .

[48]  M. Hastings,et al.  Intermittent polaron dynamics: Born-Oppenheimer approximation out of equilibrium , 2006 .

[49]  J. A. Carter,et al.  Ultrafast Flash Thermal Conductance of Molecular Chains , 2007, Science.

[50]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[51]  Mark E. Greene,et al.  Room Temperature Negative Differential Resistance through Individual Organic Molecules on Silicon Surfaces , 2004 .

[52]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[53]  S. Datta,et al.  A self-consistent transport model for molecular conduction based on extended Hückel theory with full three-dimensional electrostatics. , 2005, The Journal of chemical physics.

[54]  R. Kiehl,et al.  Charge storage model for hysteretic negative-differential resistance in metal-molecule-metal junctions , 2006 .

[55]  N. Lorente,et al.  Single-molecule manipulation and chemistry with the STM , 2005 .

[56]  M. Reed,et al.  Room-Temperature Negative Differential Resistance in Nanoscale Molecular Junctions , 2000 .

[57]  M. Di Ventra,et al.  Inelastic effects on the transport properties of alkanethiols. , 2004, Nano letters.

[58]  Yuyuan Tian,et al.  Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions , 2003, Science.

[59]  C. Lambert,et al.  Precision control of single-molecule electrical junctions , 2006, Nature materials.

[60]  A. Majumdar,et al.  Room temperature thermal conductance of alkanedithiol self-assembled monolayers , 2006 .

[61]  Joshua Jortner,et al.  Temperature dependent activation energy for electron transfer between biological molecules , 1976 .

[62]  Arun Majumdar,et al.  Thermoelectricity in Molecular Junctions , 2007, Science.

[63]  Leo P. Kadanoff,et al.  Quantum Statistical Mechanics , 2018 .

[64]  W. Lu,et al.  First-principles simulations of inelastic electron tunneling spectroscopy of molecular electronic devices. , 2005, Nano letters.

[65]  E. Fitzgerald,et al.  High quality In0.48Ga0.52P grown by gas source molecular beam epitaxy , 1992 .

[66]  M. Ratner,et al.  On the Line Widths of Vibrational Features in Inelastic Electron Tunneling Spectroscopy , 2004 .

[67]  J. Tour,et al.  Are Single Molecular Wires Conducting? , 1996, Science.

[68]  J. Andréasson,et al.  Switching of a photochromic molecule on gold electrodes: single-molecule measurements , 2005 .

[69]  Semiclassical analysis of the nonequilibrium local polaron. , 2004, Physical review letters.

[70]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[71]  E. Lörtscher,et al.  Reversible and controllable switching of a single-molecule junction. , 2006, Small.

[72]  Jonas I. Goldsmith,et al.  Coulomb blockade and the Kondo effect in single-atom transistors , 2002, Nature.

[73]  M. Ratner,et al.  Interface geometry and molecular junction conductance: geometric fluctuation and stochastic switching. , 2005, Nano letters.

[74]  S. Dallakyan,et al.  Sub-Poissonian shot noise in molecular wires , 2002, cond-mat/0209143.

[75]  Nathalie Katsonis,et al.  Reversible Conductance Switching of Single Diarylethenes on a Gold Surface , 2006 .

[76]  Zhifeng Huang,et al.  Measurement of current-induced local heating in a single molecule junction. , 2006, Nano letters.

[77]  J. V. van Ruitenbeek,et al.  Shot noise measurements on a single molecule. , 2006, Nano letters.

[78]  C. H. Patterson,et al.  Vibronic contributions to charge transport across molecular junctions , 2004 .

[79]  S. Mashiko,et al.  Optical switching of single-electron tunneling in SiO2∕molecule∕SiO2 multilayer on Si(100) , 2004 .

[80]  D. Stewart,et al.  Tracing electronic pathways in molecules by using inelastic tunneling spectroscopy , 2007, Proceedings of the National Academy of Sciences.

[81]  N. D. Lang,et al.  Measurement of the conductance of a hydrogen molecule , 2002, Nature.

[82]  R. Landauer,et al.  Generalized many-channel conductance formula with application to small rings. , 1985, Physical review. B, Condensed matter.