Wavelet regression and additive models for irregularly spaced data
暂无分享,去创建一个
Ali Shojaie | Noah Simon | Asad Haris | N. Simon | A. Shojaie | Asad Haris
[1] J. Lafferty,et al. Sparse additive models , 2007, 0711.4555.
[2] Michael R. Chernick,et al. Wavelet Methods for Time Series Analysis , 2001, Technometrics.
[3] Marina I. Knight,et al. adlift: An Adaptive Lifting Scheme Algorithm , 2005 .
[4] Sujit K. Ghosh,et al. Essential Wavelets for Statistical Applications and Data Analysis , 2001, Technometrics.
[5] Y. Nesterov. Gradient methods for minimizing composite objective function , 2007 .
[6] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[7] S. Geer. Empirical Processes in M-Estimation , 2000 .
[8] M.E.Sc. Wieslaw Stepniewski,et al. The Prediction of Performance , 2013 .
[9] Anestis Antoniadis,et al. Adaptive wavelet series estimation in separable nonparametric regression models , 2001, Stat. Comput..
[10] B. Silverman,et al. Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .
[11] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[12] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[13] Y. Meyer,et al. Wavelets and Filter Banks , 1991 .
[14] Jianqing Fan,et al. Regularization of Wavelet Approximations , 2001 .
[15] Brani Vidakovic,et al. On Non-Equally Spaced Wavelet Regression , 2001 .
[16] Arne Kovac,et al. Extending the Scope of Wavelet Regression Methods by Coefficient-Dependent Thresholding , 2000 .
[17] Amara Lynn Graps,et al. An introduction to wavelets , 1995 .
[18] I. Johnstone,et al. Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .
[19] S. Geer,et al. On the conditions used to prove oracle results for the Lasso , 2009, 0910.0722.
[20] Sara van de Geer,et al. Estimation and Testing Under Sparsity: École d'Été de Probabilités de Saint-Flour XLV – 2015 , 2016 .
[21] Ashley Petersen,et al. Fused Lasso Additive Model , 2014, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[22] A. Dalalyan,et al. On the Prediction Performance of the Lasso , 2014, 1402.1700.
[23] I. Daubechies. Orthonormal bases of compactly supported wavelets II: variations on a theme , 1993 .
[24] Empirical Wavelet-based Estimation for Non-linear Additive Regression Models , 2018, 1803.04558.
[25] David L. Donoho,et al. De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.
[26] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[27] P. Tseng,et al. AMlet, RAMlet, and GAMlet: Automatic Nonlinear Fitting of Additive Models, Robust and Generalized, With Wavelets , 2004 .
[28] G. Wahba. Spline models for observational data , 1990 .
[29] Shuanglin Zhang,et al. Wavelet threshold estimation for additive regression models , 2003 .
[30] R. Tibshirani. The Lasso Problem and Uniqueness , 2012, 1206.0313.
[31] B. Turlach,et al. Interpolation methods for nonlinear wavelet regression with irregularly spaced design , 1997 .
[32] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[33] Donald B. Percival,et al. Wavelet shrinkage for unequally spaced data , 1999, Stat. Comput..
[34] T. Tony Cai,et al. Wavelet estimation for samples with random uniform design , 1999 .
[35] Guy P. Nason,et al. Adaptive lifting for nonparametric regression , 2006, Stat. Comput..
[36] Y. Meyer. Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .
[37] T. Tony Cai,et al. WAVELET SHRINKAGE FOR NONEQUISPACED SAMPLES , 1998 .
[38] Guy P. Nason,et al. Wavelet Methods in Statistics with R , 2008 .