Nesfatin-1 decreases the motivational and rewarding value of food

[1]  H. Lehnert,et al.  Nesfatin-1 Acts Centrally to Induce Sympathetic Activation of Brown Adipose Tissue and Non-Shivering Thermogenesis , 2019, Hormone and Metabolic Research.

[2]  Shiliang Zhang,et al.  The Ventral Tegmental Area has calbindin neurons with the capability to co‐release glutamate and dopamine into the nucleus accumbens , 2019, The European journal of neuroscience.

[3]  Anatol C. Kreitzer,et al.  Thermal constraints on in vivo optogenetic manipulations , 2019, Nature Neuroscience.

[4]  M. Rose,et al.  Nesfatin-130-59 Injected Intracerebroventricularly Increases Anxiety, Depression-Like Behavior, and Anhedonia in Normal Weight Rats , 2018, Nutrients.

[5]  H. Lehnert,et al.  The thermogenic effect of nesfatin-1 requires recruitment of the melanocortin system. , 2017, The Journal of endocrinology.

[6]  G. Koob,et al.  Pathological Overeating: Emerging Evidence for a Compulsivity Construct , 2017, Neuropsychopharmacology.

[7]  M. Mulholland,et al.  Nesfatin-1 promotes brown adipocyte phenotype , 2016, Scientific Reports.

[8]  A. N. van den Pol,et al.  Separate Circuitries Encode the Hedonic and Nutritional Values of Sugar , 2016, Nature Neuroscience.

[9]  B. Klapp,et al.  Nesfatin-130−59 Injected Intracerebroventricularly Differentially Affects Food Intake Microstructure in Rats Under Normal Weight and Diet-Induced Obese Conditions , 2015, Front. Neurosci..

[10]  J. G. Edwards,et al.  Ventral tegmental area dopamine and GABA neurons: Physiological properties and expression of mRNA for endocannabinoid biosynthetic elements , 2015, Scientific Reports.

[11]  Hong Jiang,et al.  Nesfatin-1 acts on the dopaminergic reward pathway to inhibit food intake , 2015, Neuropeptides.

[12]  C. Paladini,et al.  Cocaine Increases Dopaminergic Neuron and Motor Activity via Midbrain α1 Adrenergic Signaling , 2015, Neuropsychopharmacology.

[13]  H. Lehnert,et al.  Nesfatin‐1 increases energy expenditure and reduces food intake in rats , 2014, Obesity.

[14]  Roger A. H. Adan,et al.  Combined Use of the Canine Adenovirus-2 and DREADD-Technology to Activate Specific Neural Pathways In Vivo , 2014, PloS one.

[15]  Junxia Xie,et al.  Nesfatin-1 Decreases Excitability of Dopaminergic Neurons in the Substantia Nigra , 2014, Journal of Molecular Neuroscience.

[16]  Ana I. Domingos,et al.  Hypothalamic melanin concentrating hormone neurons communicate the nutrient value of sugar , 2013, eLife.

[17]  Peng-fei Wang,et al.  Nesfatin-1 Stimulates Fatty-Acid Oxidation by Activating AMP-Activated Protein Kinase in STZ-Induced Type 2 Diabetic Mice , 2013, PloS one.

[18]  Ana I. Domingos,et al.  The reward value of sucrose in leptin-deficient obese mice , 2013, Molecular metabolism.

[19]  M. Palkovits,et al.  Nesfatin-1 exerts long-term effect on food intake and body temperature. , 2012, International journal of obesity.

[20]  Elyssa B. Margolis,et al.  Identification of Rat Ventral Tegmental Area GABAergic Neurons , 2012, PloS one.

[21]  W. Samson,et al.  Evidence for a Role of Endogenous Nesfatin‐1 in the Control of Water Drinking , 2012, Journal of neuroendocrinology.

[22]  Ana I. Domingos,et al.  Leptin regulates the reward value of nutrient , 2011, Nature Neuroscience.

[23]  B. Chieng,et al.  Distinct cellular properties of identified dopaminergic and GABAergic neurons in the mouse ventral tegmental area , 2011, The Journal of physiology.

[24]  Y. Taché,et al.  Localization of nesfatin-1 neurons in the mouse brain and functional implication , 2011, Brain Research.

[25]  Y. Taché,et al.  Central nesfatin-1 reduces the nocturnal food intake in mice by reducing meal size and increasing inter-meal intervals , 2011, Peptides.

[26]  Nora D. Volkow,et al.  Reward, dopamine and the control of food intake: implications for obesity , 2011, Trends in Cognitive Sciences.

[27]  H. Randeva,et al.  Identification of nesfatin-1 in human and murine adipose tissue: a novel depot-specific adipokine with increased levels in obesity. , 2010, Endocrinology.

[28]  S. J. Shammah-Lagnado,et al.  Nutrient Selection in the Absence of Taste Receptor Signaling , 2010, The Journal of Neuroscience.

[29]  W. Samson,et al.  The anorexigenic and hypertensive effects of nesfatin-1 are reversed by pretreatment with an oxytocin receptor antagonist. , 2010, American journal of physiology. Regulatory, integrative and comparative physiology.

[30]  F. Gaytán,et al.  The Anorexigenic Neuropeptide, Nesfatin-1, Is Indispensable for Normal Puberty Onset in the Female Rat , 2010, The Journal of Neuroscience.

[31]  C. Ostenson,et al.  Nucleobindin-2/nesfatin in the endocrine pancreas: distribution and relationship to glycaemic state. , 2010, The Journal of endocrinology.

[32]  E. Ravussin,et al.  Increased food energy supply is more than sufficient to explain the US epidemic of obesity. , 2009, The American journal of clinical nutrition.

[33]  M. Dietrich,et al.  Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway. , 2009, Cell metabolism.

[34]  Y. Taché,et al.  Central nesfatin-1 reduces dark-phase food intake and gastric emptying in rats: differential role of corticotropin-releasing factor2 receptor. , 2009, Endocrinology.

[35]  S. Unniappan,et al.  Pancreatic beta cells colocalize insulin and pronesfatin immunoreactivity in rodents. , 2009, Biochemical and biophysical research communications.

[36]  Y. Taché,et al.  Nesfatin-1 immunoreactivity in rat brain and spinal cord autonomic nuclei , 2009, Neuroscience Letters.

[37]  K. Inoue,et al.  Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin-independent mechanism. , 2009, Endocrinology.

[38]  H. Brismar,et al.  Distribution and neuropeptide coexistence of nucleobindin-2 mRNA/nesfatin-like immunoreactivity in the rat CNS , 2008, Neuroscience.

[39]  H. Anisman,et al.  Nesfatin-1 increases anxiety- and fear-related behaviors in the rat , 2008, Psychopharmacology.

[40]  S. Sternson,et al.  A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-Range Circuit Mapping , 2008, The Journal of Neuroscience.

[41]  Sidney A. Simon,et al.  Food Reward in the Absence of Taste Receptor Signaling , 2008, Neuron.

[42]  M. Mori,et al.  Nesfatin-1 neurons in paraventricular and supraoptic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. , 2008, Endocrinology.

[43]  W. Banks,et al.  Permeability of the blood–brain barrier to a novel satiety molecule nesfatin-1 , 2007, Peptides.

[44]  W. Pan,et al.  Nesfatin-1 crosses the blood–brain barrier without saturation , 2007, Peptides.

[45]  S. L. Dun,et al.  Nesfatin-1: distribution and interaction with a G protein-coupled receptor in the rat brain. , 2007, Endocrinology.

[46]  Elyssa B. Margolis,et al.  The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? , 2006, The Journal of physiology.

[47]  M. Mori,et al.  Identification of nesfatin-1 as a satiety molecule in the hypothalamus , 2006, Nature.

[48]  C. Erlanson‐Albertsson How palatable food disrupts appetite regulation. , 2005, Basic & clinical pharmacology & toxicology.

[49]  O. Jöhren,et al.  Differential Expression of AT1 Receptors in the Pituitary and Adrenal Gland of SHR and WKY , 2003, Hypertension.

[50]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[51]  Y. Kurachi,et al.  G protein regulation of potassium ion channels. , 1998, Pharmacological reviews.

[52]  R. Palmiter,et al.  Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic , 1995, Cell.

[53]  M. Lazdunski,et al.  Molecular Properties of Neuronal G-protein-activated Inwardly Rectifying K+ Channels (*) , 1995, The Journal of Biological Chemistry.

[54]  J. Rogers Immunohistochemical markers in rat brain: colocalization of calretinin and calbindin-D28k with tyrosine hydroxylase , 1992, Brain Research.

[55]  H. Lehnert,et al.  Nesfatin-1: functions and physiology of a novel regulatory peptide. , 2017, The Journal of endocrinology.

[56]  H. Lehnert,et al.  Intranasal leptin reduces appetite and induces weight loss in rats with diet-induced obesity (DIO). , 2012, Endocrinology.

[57]  G. Sachs,et al.  Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. , 2009, Endocrinology.

[58]  J. Salamone,et al.  Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure , 2005, Psychopharmacology.