Room-Temperature Planar Lasers Based on Water-Dripping Microplates of Colloidal Quantum Dots

The solution-processable colloidal quantum dots (CQDs) attract great interests in small-size laser applications because of the high quantum yields and the tunable emission wavelengths. The small CQD lasers based on the microplates are of importance in the highly integrated photonic circuits, and the simple and low-cost manufacturing methods to obtain the CQD microplates are greatly desired and appealing in applications. Here, by employing the simple drop-casting and water-dripping method, the high-quality CQD microplates with various shapes and sizes are experimentally manufactured under the proper solvents and solvent ratio as well as environment temperature. Evidently, this manufacturing method does not require any expensive or special instruments. Because of both the large gain coefficients and the high quality factors of the CQD microplates, the room-temperature planar multi- and single-mode CQD lasers with p-polarized emissions are experimentally realized under low pump thresholds. Moreover, it is de...

[1]  Koch,et al.  Semiconductor microlaser linewidths. , 1994, Physical review letters.

[2]  M. Bawendi,et al.  Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy , 1999, Nature.

[3]  Handong Sun,et al.  Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high‐Q microlasers , 2015 .

[4]  Jagjit Nanda,et al.  Single-exciton optical gain in semiconductor nanocrystals , 2007, Nature.

[5]  O. Voznyy,et al.  Microsecond-sustained lasing from colloidal quantum dot solids , 2015, Nature Communications.

[6]  Preston T. Snee,et al.  Whispering‐Gallery‐Mode Lasing from a Semiconductor Nanocrystal/Microsphere Resonator Composite , 2005 .

[7]  S. Xiao,et al.  Unidirectional Lasing Emissions from CH3NH3PbBr3 Perovskite Microdisks , 2016 .

[8]  Chunxiang Xu,et al.  Whispering‐gallery mode lasing in ZnO microcavities , 2014 .

[9]  K. Cho,et al.  Wetting‐Assisted Crack‐ and Wrinkle‐Free Transfer of Wafer‐Scale Graphene onto Arbitrary Substrates over a Wide Range of Surface Energies , 2016 .

[10]  Minsu Kang,et al.  Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone. , 2016, Nanoscale.

[11]  A. Trichet,et al.  Gain Spectroscopy of Solution‐Based Semiconductor Nanocrystals in Tunable Optical Microcavities , 2016 .

[12]  Peidong Yang,et al.  Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides , 2003 .

[13]  Sidney T. Malak,et al.  Core/Alloyed-Shell Quantum Dot Robust Solid Films with High Optical Gains , 2016 .

[14]  Cherie R. Kagan,et al.  Charge transport in strongly coupled quantum dot solids. , 2015, Nature nanotechnology.

[15]  G. Rainò,et al.  Nearly Temperature‐Independent Threshold for Amplified Spontaneous Emission in Colloidal CdSe/CdS Quantum Dot‐in‐Rods , 2012, Advanced materials.

[16]  Yixing Yang,et al.  High‐Efficient Deep‐Blue Light‐Emitting Diodes by Using High Quality ZnxCd1‐xS/ZnS Core/Shell Quantum Dots , 2014 .

[17]  Xuedong Wang,et al.  Controlled Self-Assembly of Organic Microcrystals for Laser Applications , 2015 .

[18]  Victor I Klimov,et al.  Effect of Auger Recombination on Lasing in Heterostructured Quantum Dots with Engineered Core/Shell Interfaces. , 2015, Nano letters.

[19]  S. Rotter,et al.  Random Lasing with Systematic Threshold Behavior in Films of CdSe/CdS Core/Thick-Shell Colloidal Quantum Dots. , 2015, ACS nano.

[20]  Hyochul Kim,et al.  Single-Mode Lasing from a Monolithic Microcavity with Few-Monolayer-Thick Quantum Dot Films , 2016 .

[21]  Xiang Zhang,et al.  Multiplexed and electrically modulated plasmon laser circuit. , 2012, Nano letters.

[22]  Cuong Dang,et al.  Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films , 2013 .

[23]  S. Xiao,et al.  Tailoring the lasing modes in CH3NH3PbBr3 perovskite microplates via micro-manipulation , 2016 .

[24]  M. Gather,et al.  Advances in small lasers , 2014, Nature Photonics.

[25]  Yong-Zhen Huang,et al.  Mode characteristics and directional emission for square microcavity lasers , 2016 .

[26]  Qing Liao,et al.  Perovskite Microdisk Microlasers Self‐Assembled from Solution , 2015, Advanced materials.

[27]  J. Jasieniak,et al.  Soft‐Lithographed Up‐Converted Distributed Feedback Visible Lasers Based on CdSe–CdZnS–ZnS Quantum Dots , 2012 .

[28]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[29]  Tao Deng,et al.  Soft‐Lithographically Embossed, Multilayered Distributed‐Feedback Nanocrystal Lasers , 2004 .

[30]  Vikram C. Sundar,et al.  Color-selective semiconductor nanocrystal laser , 2002 .

[31]  Pengfei Wang,et al.  Single-mode tunable laser emission in the single-exciton regime from colloidal nanocrystals , 2013, Nature Communications.

[32]  Rui Chen,et al.  Stimulated Emission and Lasing from CdSe/CdS/ZnS Core‐Multi‐Shell Quantum Dots by Simultaneous Three‐Photon Absorption , 2014, Advanced materials.

[33]  J. Q. Grim,et al.  Single-mode lasing from colloidal water-soluble CdSe/CdS quantum dot-in-rods. , 2015, Small.

[34]  Yong-Zhen Huang,et al.  Mode Characteristics of Unidirectional Emission AlGaInAs/InP Square Resonator Microlasers , 2014, IEEE Journal of Quantum Electronics.

[35]  Xinglong Wu,et al.  Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting. , 2016, ACS nano.

[36]  G. Turnbull,et al.  Improved operational lifetime of semiconducting polymer lasers by encapsulation , 2007 .

[37]  Y. Zhao,et al.  Dual-Wavelength Switchable Vibronic Lasing in Single-Crystal Organic Microdisks. , 2017, Nano letters.

[38]  Cherie R. Kagan,et al.  Building devices from colloidal quantum dots , 2016, Science.

[39]  Kerry J. Vahala,et al.  Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers , 2006 .

[40]  Moungi G. Bawendi,et al.  Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[42]  Tze Chien Sum,et al.  High‐Quality Whispering‐Gallery‐Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets , 2016 .

[43]  Cuong Dang,et al.  Stable and Low‐Threshold Optical Gain in CdSe/CdS Quantum Dots: An All‐Colloidal Frequency Up‐Converted Laser , 2015, Advanced materials.

[44]  Claus-Dieter Ohl,et al.  Robust Whispering-Gallery-Mode Microbubble Lasers from Colloidal Quantum Dots. , 2017, Nano letters.

[45]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[46]  Hong-Bo Sun,et al.  Whispering‐gallery mode lasing from patterned molecular single‐crystalline microcavity array , 2013 .

[47]  J. Arbiol,et al.  Whispering gallery mode lasing from hexagonal shaped layered lead iodide crystals. , 2015, ACS nano.

[48]  A. Susha,et al.  Quantum dot microdrop laser , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[49]  P. Bhattacharya,et al.  Coherent and directional emission at 1.55 μm from PbSe colloidal quantum dot electroluminescent device on silicon. , 2011, Optics express.

[50]  Rui Chen,et al.  Blue Liquid Lasers from Solution of CdZnS/ZnS Ternary Alloy Quantum Dots with Quasi‐Continuous Pumping , 2015, Advanced materials.

[51]  Chang-ling Zou,et al.  Output Coupling of Perovskite Lasers from Embedded Nanoscale Plasmonic Waveguides. , 2016, Journal of the American Chemical Society.

[52]  Yong-Zhen Huang,et al.  Mode selection in square resonator microlasers for widely tunable single mode lasing. , 2015, Optics express.

[53]  I. Moreels,et al.  Broadband Amplified Spontaneous Emission and Random Lasing from Wurtzite CdSe/CdS “Giant-Shell” Nanocrystals , 2016 .