A simple analysis of some a posteriori error estimates

Abstract We analyze two popular classes of a posteriori error estimates within the abstract framework established by Babuska and Aziz (1972). Within this framework, we find that bounds for the a posteriori error estimates depend on several of the same constants as a priori error estimates, notably the famous inf—sup constant. We apply our general theory to some specific finite element approximations for the Poisson equation and Stokes equations.

[1]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[2]  Randolph E. Bank,et al.  A posteriori error estimates for the Stokes problem , 1991 .

[3]  Randolph E. Bank,et al.  Hierarchical bases and the finite element method , 1996, Acta Numerica.

[4]  Ricardo G. Durán,et al.  On the asymptotic exactness of error estimators for linear triangular finite elements , 1991 .

[5]  Ivo Babuška,et al.  Accuracy estimates and adaptive refinements in finite element computations , 1986 .

[6]  J. Maître,et al.  The contraction number of a class of two-level methods; an exact evaluation for some finite element subspaces and model problems , 1982 .

[7]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .

[8]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[9]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[10]  Randolph E. Bank,et al.  Analysis Of A Two-Level Scheme For Solving Finite Element Equations , 1980 .

[11]  Ivo Babuška,et al.  Basic principles of feedback and adaptive approaches in the finite element method , 1986 .

[12]  Alan Weiser,et al.  Local-mesh, local-order, adaptive finite element methods with a-posteriori error estimators for elliptic partial differential equations , 1981 .

[13]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[14]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[15]  D. Braess The contraction number of a multigrid method for solving the Poisson equation , 1981 .

[16]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[17]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[18]  Ricardo G. Durán,et al.  On the asymptotic exactness of Bank-Weiser's estimator , 1992 .

[19]  A Review of A Posteriori Error Estimation , 1996 .

[20]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[21]  ScienceDirect,et al.  Applied numerical mathematics , 1985 .

[22]  Bruno Denis Welfert a Posteriori Error Estimates and Adaptive Solution of Fluid Flow Problems , 1990 .

[23]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[24]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[25]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[26]  Victor Eijkhout,et al.  The Role of the Strengthened Cauchy-Buniakowskii-Schwarz Inequality in Multilevel Methods , 1991, SIAM Rev..

[27]  J. Oden,et al.  A procedure for a posteriori error estimation for h-p finite element methods , 1992 .