Multi-Resolution and Wavelet Representations for Identifying Signatures of Disease

Identifying physiological and anatomical signatures of disease in signals and images is one of the fundamental challenges in biomedical engineering. The challenge is most apparent given that such signatures must be identified in spite of tremendous inter and intra-subject variability and noise. Crucial for uncovering these signatures has been the development of methods that exploit general statistical properties of natural signals. The signal processing and applied mathematics communities have developed, in recent years, signal representations which take advantage of Gabor-type and wavelet-type functions that localize signal energy in a joint time-frequency and/or space-frequency domain. These techniques can be expressed as multi-resolution transformations, of which perhaps the best known is the wavelet transform. In this paper we review wavelets, and other related multi-resolution transforms, within the context of identifying signatures for disease. These transforms construct a general representation of signals which can be used in detection, diagnosis and treatment monitoring. We present several examples where these transforms are applied to biomedical signal and imaging processing. These include computer-aided diagnosis in mammography, real-time mosaicking of ophthalmic slit-lamp imagery, characterization of heart disease via ultrasound, predicting epileptic seizures and signature analysis of the electroencephalogram, and reconstruction of positron emission tomography data.

[1]  W Welkowitz,et al.  Carotid-cardiac interaction: heart rate variability during the unblocking of the carotid artery. , 1993, Advances in experimental medicine and biology.

[2]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[3]  Nico Karssemeijer,et al.  Single and multiscale detection of masses in digital mammograms , 1999, IEEE Transactions on Medical Imaging.

[4]  Barak A. Pearlmutter,et al.  Blind Source Separation via Multinode Sparse Representation , 2001, NIPS.

[5]  John D. Austin,et al.  Adaptive histogram equalization and its variations , 1987 .

[6]  Y. Zeevi,et al.  Analysis of Multiwindow Gabor-Type Schemes by Frame Methods☆ , 1997 .

[7]  Wei Zhang,et al.  Optimizing wavelet transform based on supervised learning for detection of microcalcifications in digital mammograms , 1995, Proceedings., International Conference on Image Processing.

[8]  R. Haddad,et al.  Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets , 1992 .

[9]  Ronald R. Coifman,et al.  Entropy-based algorithms for best basis selection , 1992, IEEE Trans. Inf. Theory.

[10]  H. Sittek,et al.  Computer-aided diagnosis in mammography , 1997, Der Radiologe.

[11]  G. Vachtsevanos,et al.  Epileptic Seizures May Begin Hours in Advance of Clinical Onset A Report of Five Patients , 2001, Neuron.

[12]  Andrew F. Laine,et al.  Wavelet processing techniques for digital mammography , 1992, Other Conferences.

[13]  Yehoshua Y. Zeevi,et al.  Forward-and-backward diffusion processes for adaptive image enhancement and denoising , 2002, IEEE Trans. Image Process..

[14]  Lucas C. Parra,et al.  A multi-scale probabilistic network model for detection, synthesis and compression in mammographic image analysis , 2003, Medical Image Anal..

[15]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[16]  Dennis M. Healy,et al.  Contrast enhancement of medical images using multiscale edge representation , 1994, Defense, Security, and Sensing.

[17]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[18]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Yehoshua Y. Zeevi,et al.  Wavelet representation and total variation regularization in emission tomography , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[20]  L. G. Gamero,et al.  Heart rate variability analysis using wavelet transform , 1996, Computers in Cardiology 1996.

[21]  James S. Duncan,et al.  Measurement of non-rigid motion using contour shape descriptors , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Paul Sajda,et al.  Learning contextual relationships in mammograms using a hierarchical pyramid neural network , 2002, IEEE Transactions on Medical Imaging.

[23]  P. Sajda,et al.  Detection, synthesis and compression in mammographic image analysis with a hierarchical image probability model , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[24]  Yehoshua Y. Zeevi,et al.  Extraction of a source from multichannel data using sparse decomposition , 2002, Neurocomputing.

[25]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[26]  Werner Frei,et al.  Image Enhancement by Histogram Hyperbolization , 1977 .

[27]  Peter J. Burt,et al.  Smart sensing within a pyramid vision machine , 1988, Proc. IEEE.

[28]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[29]  Michael Kerckhove,et al.  Scale-Space and Morphology in Computer Vision , 2001, Lecture Notes in Computer Science 2106.

[30]  S. Mallat A wavelet tour of signal processing , 1998 .

[31]  Charles V. Stewart,et al.  Robust hierarchical algorithm for constructing a mosaic from images of the curved human retina , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[32]  John J. Benedetto,et al.  Periodic Wavelet Transforms and Periodicity Detection , 2002, SIAM J. Appl. Math..

[33]  L P Clarke,et al.  Digital mammography: computer-assisted diagnosis method for mass detection with multiorientation and multiresolution wavelet transforms. , 1997, Academic radiology.

[34]  R M Rangayyan,et al.  Feature enhancement of film mammograms using fixed and adaptive neighborhoods. , 1984, Applied optics.

[35]  Azeddine Beghdadi,et al.  Contrast enhancement technique based on local detection of edges , 1989, Comput. Vis. Graph. Image Process..

[36]  Andrew F. Laine,et al.  Regularization in tomographic reconstruction using thresholding estimators , 2003, IEEE Transactions on Medical Imaging.

[37]  Jian Fan,et al.  Adaptive multiscale processing for contrast enhancement , 1993, Electronic Imaging.

[38]  M. Vetterli,et al.  Nonseparable two- and three-dimensional wavelets , 1995, IEEE Trans. Signal Process..

[39]  Peter J. Burt,et al.  Moment images, polynomial fit filters. and the problem of surface interpolation , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[40]  G. Bergey,et al.  Time-frequency analysis using the matching pursuit algorithm applied to seizures originating from the mesial temporal lobe. , 1998, Electroencephalography and clinical neurophysiology.

[41]  D. Brzakovic,et al.  MAMMOGRAM SCREENING USING MULTIRESOLUTION-BASED IMAGE SEGMENTATION , 1993 .

[42]  C E Metz,et al.  Gains in Accuracy from Replicated Readings of Diagnostic Images , 1992, Medical decision making : an international journal of the Society for Medical Decision Making.

[43]  Brian Litt,et al.  Time-frequency spectral estimation of multichannel EEG using the Auto-SLEX method , 2002, IEEE Transactions on Biomedical Engineering.

[44]  G. MallatS. A Theory for Multiresolution Signal Decomposition , 1989 .

[45]  Elsa D. Angelini,et al.  LV volume quantification via spatiotemporal analysis of real-time 3-D echocardiography , 2001, IEEE Transactions on Medical Imaging.

[46]  Yehoshua Y. Zeevi,et al.  Two-dimensional orthogonal wavelets with vanishing moments , 1996, IEEE Trans. Signal Process..

[47]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[48]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  J. Brickmann B. Mandelbrot: The Fractal Geometry of Nature, Freeman and Co., San Francisco 1982. 460 Seiten, Preis: £ 22,75. , 1985 .

[50]  K Doi,et al.  Investigation of basic imaging properties in digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns. , 1985, Medical physics.

[51]  M. Porat,et al.  Localized texture processing in vision: analysis and synthesis in the Gaborian space , 1989, IEEE Transactions on Biomedical Engineering.

[52]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[53]  Metin Akay,et al.  Wavelet decomposition of cardiovascular signals for baroreceptor function tests in pigs , 2002, IEEE Transactions on Biomedical Engineering.

[54]  M. Giger,et al.  Digital Radiography , 1993, Acta radiologica.

[55]  M. Akay,et al.  Short-term analysis of heart-rate variability of adapted wavelet transforms , 1997, IEEE Engineering in Medicine and Biology Magazine.

[56]  A. Aldroubi,et al.  Wavelets in Medicine and Biology , 1997 .

[57]  Robert M. Nishikawa,et al.  Exploiting context in mammograms: a hierarchical neural network for detecting microcalcifications , 1996, Medical Imaging.

[58]  E. Dubois,et al.  Digital picture processing , 1985, Proceedings of the IEEE.

[59]  Yehoshua Y. Zeevi,et al.  Two-dimensional orthogonal filter banks and wavelets with linear phase , 1998, IEEE Trans. Signal Process..

[60]  Jian Fan,et al.  Mammographic feature enhancement by multiscale analysis , 1994, IEEE Trans. Medical Imaging.

[61]  J W Oestmann,et al.  Storage phosphor versus screen-film radiography: effect of varying exposure parameters and unsharp mask filtering on the detectability of cortical bone defects. , 1990, Radiology.

[62]  Heinz-Otto Peitgen,et al.  Scale-space signatures for the detection of clustered microcalcifications in digital mammograms , 1999, IEEE Transactions on Medical Imaging.

[63]  James S. Duncan,et al.  A model-based integrated approach to track myocardial deformation using displacement and velocity constraints , 1995, Proceedings of IEEE International Conference on Computer Vision.

[64]  Paul Sajda,et al.  Integrating neural networks with image pyramids to learn target context , 1995, Neural Networks.

[65]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[66]  R. Hummel Histogram modification techniques , 1975 .

[67]  Richard G. Baraniuk,et al.  Multiscale image segmentation using wavelet-domain hidden Markov models , 2001, IEEE Trans. Image Process..

[68]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[69]  Laurent D. Cohen,et al.  Tracking and motion analysis of the left ventricle with deformable superquadrics , 1996, Medical Image Anal..

[70]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[71]  J. Berger,et al.  Computer-vision-enabled augmented reality fundus biomicroscopy. , 1999, Ophthalmology.

[72]  J W Oestmann,et al.  High frequency edge enhancement in the detection of fine pulmonary lines. Parity between storage phosphor digital images and conventional chest radiography. , 1989, Investigative radiology.

[73]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  W F Bischof,et al.  Automated detection and classification of breast tumors. , 1992, Computers and biomedical research, an international journal.

[75]  V Pichot,et al.  Wavelet transform to quantify heart rate variability and to assess its instantaneous changes. , 1999, Journal of applied physiology.

[76]  A. Medl,et al.  Time Frequency and Wavelets in Biomedical Signal Processing , 1998, IEEE Engineering in Medicine and Biology Magazine.

[77]  Y. Meyer,et al.  Wavelets and Filter Banks , 1991 .

[78]  Franck Neycenssac,et al.  Contrast Enhancement Using the Laplacian-of-a-Gaussian Filter , 1993, CVGIP Graph. Model. Image Process..

[79]  J W Berger,et al.  Mosaicking and enhancement of slit lamp biomicroscopic fundus images , 2001, The British journal of ophthalmology.

[80]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[81]  Yehoshua Y. Zeevi,et al.  The Generalized Gabor Scheme of Image Representation in Biological and Machine Vision , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[82]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[83]  Justin K. Romberg,et al.  Bayesian tree-structured image modeling using wavelet-domain hidden Markov models , 2001, IEEE Trans. Image Process..

[84]  Andrew F. Laine,et al.  Multiscale wavelet representations for mammographic feature analysis , 1992, Optics & Photonics.

[85]  Barak A. Pearlmutter,et al.  Blind Source Separation by Sparse Decomposition in a Signal Dictionary , 2001, Neural Computation.

[86]  E. Thurfjell,et al.  Benefit of independent double reading in a population-based mammography screening program. , 1994, Radiology.

[87]  Susan M. Astley,et al.  State of the Art in Digital Mammographic Image Analysis , 1994 .

[88]  Hui Cheng,et al.  Multiscale Bayesian segmentation using a trainable context model , 2001, IEEE Trans. Image Process..

[89]  Nikolas P. Galatsanos,et al.  Digital Image Enhancement , 2003 .

[90]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[91]  Paul Sajda,et al.  Applications of Multi-Resolution Neural Networks to Mammography , 1998, NIPS.

[92]  Ronald R. Coifman,et al.  Brushlets: A Tool for Directional Image Analysis and Image Compression , 1997 .

[93]  Nicholas Ayache,et al.  Dense Non-Rigid Motion Estimation in Sequences of 3D Images Using Differential Constraints , 1995, CVRMed.

[94]  Peter J. Burt,et al.  Object tracking with a moving camera , 1989, [1989] Proceedings. Workshop on Visual Motion.

[95]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[96]  R. Hingorani,et al.  OBJECT TRACKING WITH A MOVING CAMERA An Application of Dynaiiiic Motion Analysis , 1989 .

[97]  K. Lehnertz,et al.  Seizure prediction and the preseizure period , 2002, Current opinion in neurology.

[98]  Michael Unser,et al.  A review of wavelets in biomedical applications , 1996, Proc. IEEE.

[99]  W A Murphy,et al.  Professional quality assurance for mammography screening programs. , 1990, Radiology.