暂无分享,去创建一个
[1] Giancarlo Sangalli,et al. ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .
[2] G. Sangalli,et al. Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .
[3] Gershon Elber,et al. Geometric modeling with splines - an introduction , 2001 .
[4] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[5] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[6] Hendrik Speleers,et al. Standard and Non-standard CAGD Tools for Isogeometric Analysis: A Tutorial , 2016 .
[7] Marjorie A. McClain,et al. A Survey of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2011 .
[8] Trond Kvamsdal,et al. On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines , 2015 .
[9] Hendrik Speleers,et al. Hierarchical spline spaces: quasi-interpolants and local approximation estimates , 2017, Adv. Comput. Math..
[10] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[11] Hendrik Speleers,et al. Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.
[12] T. Lyche,et al. Some examples of quasi-interpolants constructed from local spline projectors , 2001 .
[13] Bert Jüttler,et al. A hierarchical construction of LR meshes in 2D , 2015, Comput. Aided Geom. Des..
[14] Trond Kvamsdal,et al. Isogeometric analysis using LR B-splines , 2014 .
[15] C. R. Deboor,et al. A practical guide to splines , 1978 .
[16] Tor Dokken,et al. Linear dependence of bivariate Minimal Support and Locally Refined B-splines over LR-meshes , 2018, Comput. Aided Geom. Des..
[17] Tom Lyche,et al. Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement , 2018 .
[18] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[19] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[20] Giancarlo Sangalli,et al. Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.
[21] Andrea Bressan,et al. Some properties of LR-splines , 2013, Comput. Aided Geom. Des..
[22] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[23] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[24] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[25] Juan Cao,et al. A finite element framework based on bivariate simplex splines on triangle configurations , 2019 .
[26] Bert Jüttler,et al. Patchwork B-spline refinement , 2017, Comput. Aided Des..
[27] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.