Adaptive refinement with locally linearly independent LR B-splines: Theory and applications

Abstract In this paper, we describe an adaptive refinement strategy for LR B-splines. The presented strategy ensures, at each iteration, local linear independence of the obtained set of LR B-splines. This property is then exploited in two applications: the construction of efficient quasi-interpolation schemes and the numerical solution of elliptic problems using the isogeometric Galerkin method.

[1]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[2]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[3]  Gershon Elber,et al.  Geometric modeling with splines - an introduction , 2001 .

[4]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[5]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[6]  Hendrik Speleers,et al.  Standard and Non-standard CAGD Tools for Isogeometric Analysis: A Tutorial , 2016 .

[7]  Marjorie A. McClain,et al.  A Survey of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2011 .

[8]  Trond Kvamsdal,et al.  On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines , 2015 .

[9]  Hendrik Speleers,et al.  Hierarchical spline spaces: quasi-interpolants and local approximation estimates , 2017, Adv. Comput. Math..

[10]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[11]  Hendrik Speleers,et al.  Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.

[12]  T. Lyche,et al.  Some examples of quasi-interpolants constructed from local spline projectors , 2001 .

[13]  Bert Jüttler,et al.  A hierarchical construction of LR meshes in 2D , 2015, Comput. Aided Geom. Des..

[14]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[15]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[16]  Tor Dokken,et al.  Linear dependence of bivariate Minimal Support and Locally Refined B-splines over LR-meshes , 2018, Comput. Aided Geom. Des..

[17]  Tom Lyche,et al.  Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement , 2018 .

[18]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[19]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[20]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[21]  Andrea Bressan,et al.  Some properties of LR-splines , 2013, Comput. Aided Geom. Des..

[22]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[23]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[24]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[25]  Juan Cao,et al.  A finite element framework based on bivariate simplex splines on triangle configurations , 2019 .

[26]  Bert Jüttler,et al.  Patchwork B-spline refinement , 2017, Comput. Aided Des..

[27]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.