Vlasov scaling for the Glauber dynamics in continuum

We consider Vlasov-type scaling for the Glauber dynamics in continuum with a positive integrable potential, and construct rescaled and limiting evolutions of correlation functions. Convergence to the limiting evolution for the positive density system in infinite volume is shown. Chaos preservation property of this evolution gives a possibility to derive a nonlinear Vlasov-type equation for the particle density of the limiting system.

[1]  Dmitri Finkelshtein,et al.  Correlation functions evolution for the Glauber dynamics in continuum , 2011 .

[2]  D. W. Stroock,et al.  Nearest neighbor birth and death processes on the real line , 1978 .

[3]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[4]  C. Preston Spatial birth and death processes , 1975, Advances in Applied Probability.

[5]  W. Klein,et al.  Rigorous derivation of the Kirkwood–Monroe equation for small activity , 1976 .

[6]  Lincoln Chayes,et al.  The McKean–Vlasov Equation in Finite Volume , 2009, 0910.4615.

[7]  E. Lytvynov,et al.  Glauber dynamics of continuous particle systems , 2003, math/0306252.

[8]  Oleksandr Kutoviy,et al.  On the metrical properties of the configuration space , 2006 .

[9]  Mathew D. Penrose,et al.  Existence and spatial limit theorems for lattice and continuum particle systems , 2008 .

[10]  V. Belavkin,et al.  On a general kinetic equation for many–particle systems with interaction, fragmentation and coagulation , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  Yuri Kondratiev,et al.  On non-equilibrium stochastic dynamics for interacting particle systems in continuum , 2008 .

[12]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[13]  E. Lytvynov,et al.  Equilibrium Kawasaki dynamics of continuous particle systems , 2005 .

[14]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures , 1975 .

[15]  A. Lenard,et al.  States of classical statistical mechanical systems of infinitely many particles. I , 1975 .

[16]  Tobias Kuna,et al.  HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY , 2002 .

[17]  Dmitri Finkelshtein,et al.  An approximative approach for construction of the Glauber dynamics in continuum , 2009 .

[18]  J. Kirkwood,et al.  Statistical Mechanics of Fusion , 1941 .

[19]  Yuri Kondratiev,et al.  One-Particle Subspace of the Glauber Dynamics Generator for Continuous Particle Systems , 2004 .

[20]  Nancy L. Garcia,et al.  Spatial birth and death processes as solutions of stochastic equations , 2006 .

[21]  Dmitri Finkelshtein,et al.  Individual Based Model with Competition in Spatial Ecology , 2008, SIAM J. Math. Anal..

[22]  P. Donnelly MARKOV PROCESSES Characterization and Convergence (Wiley Series in Probability and Mathematical Statistics) , 1987 .

[23]  V. V. Kozlov,et al.  Обобщенное кинетическое уравнение Власова@@@The generalized Vlasov kinetic equation , 2008 .

[24]  Yu. M. Sukhov,et al.  Dynamical Systems of Statistical Mechanics , 1989 .

[25]  Yuri Kondratiev,et al.  Nonequilibrium Glauber-type dynamics in continuum , 2006 .

[26]  Filippo Cesi,et al.  The spectral gap for a Glauber-type dynamics in a continuous gas☆ , 2002 .

[27]  Jan van Neerven,et al.  The Adjoint of a Semigroup of Linear Operators , 1992 .

[28]  X. Qi A functional central limit theorem for spatial birth and death processes , 2008, Advances in Applied Probability.

[29]  V. Belavkin Multiquantum systems and point processes I. Generating functionals and nonlinear semigroups , 1989 .

[30]  Dmitri Finkelshtein,et al.  Vlasov Scaling for Stochastic Dynamics of Continuous Systems , 2010 .

[31]  Yuri G. Kondratiev,et al.  Markov evolutions and hierarchical equations in the continuum. I: one-component systems , 2007, 0707.0619.

[32]  C. Chou The Vlasov equations , 1965 .

[33]  H. Spohn Kinetic equations from Hamiltonian dynamics: Markovian limits , 1980 .

[34]  Yuri G. Kondratiev,et al.  Equilibrium Glauber dynamics of continuous particle systems as a scaling limit of Kawasaki dynamics , 2006 .

[35]  W. Braun,et al.  The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles , 1977 .

[36]  Nancy L. Garcia,et al.  Spatial Point Processes and the Projection Method , 2008 .

[37]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .