Stable and consistent density-based clustering

We present a consistent approach to density-based clustering, which satisfies a stability theorem that holds without any distributional assumptions. We also show that the algorithm can be combined with standard procedures to extract a flat clustering from a hierarchical clustering, and that the resulting flat clustering algorithms satisfy stability theorems. The algorithms and proofs are inspired by topological data analysis.

[1]  Facundo Mémoli,et al.  Characterization, Stability and Convergence of Hierarchical Clustering Methods , 2010, J. Mach. Learn. Res..

[2]  Sivaraman Balakrishnan,et al.  Cluster Trees on Manifolds , 2013, NIPS.

[3]  Rebecca Nugent,et al.  Stability of density-based clustering , 2010, J. Mach. Learn. Res..

[4]  Sivaraman Balakrishnan,et al.  Statistical Inference for Cluster Trees , 2016, NIPS.

[5]  W. Stuetzle,et al.  A Generalized Single Linkage Method for Estimating the Cluster Tree of a Density , 2010 .

[6]  Michael Lesnick,et al.  Interactive Visualization of 2-D Persistence Modules , 2015, ArXiv.

[7]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.

[8]  Leland McInnes,et al.  Accelerated Hierarchical Density Based Clustering , 2017, 2017 IEEE International Conference on Data Mining Workshops (ICDMW).

[9]  A. Rinaldo,et al.  Generalized density clustering , 2009, 0907.3454.

[10]  Mikhail Belkin,et al.  Beyond Hartigan Consistency: Merge Distortion Metric for Hierarchical Clustering , 2015, COLT.

[11]  Ricardo J. G. B. Campello,et al.  Density-Based Clustering Based on Hierarchical Density Estimates , 2013, PAKDD.

[12]  Sanjoy Dasgupta,et al.  Rates of convergence for the cluster tree , 2010, NIPS.

[13]  Leonidas J. Guibas,et al.  Persistence-Based Clustering in Riemannian Manifolds , 2013, JACM.

[14]  O. Gaans Probability measures on metric spaces , 2022 .

[15]  J. Hartigan Consistency of Single Linkage for High-Density Clusters , 1981 .

[16]  F. Mémoli,et al.  Multiparameter Hierarchical Clustering Methods , 2010 .

[17]  G. Biau,et al.  A graph-based estimator of the number of clusters , 2007 .

[18]  S. H. Lui,et al.  Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts , 2011 .

[19]  Michael Lesnick,et al.  Stability of 2-Parameter Persistent Homology , 2020, Foundations of Computational Mathematics.

[20]  Gr'egory Miermont,et al.  Tessellations of random maps of arbitrary genus , 2007, 0712.3688.