Molecular dynamics and principal components of potassium binding with human telomeric intra-molecular G-quadruplex

[1]  Masayuki Endo,et al.  Direct and single-molecule visualization of the solution-state structures of G-hairpin and G-triplex intermediates. , 2014, Angewandte Chemie.

[2]  Haojun Liang,et al.  Structural Dynamics of Human Telomeric G-Quadruplex Loops Studied by Molecular Dynamics Simulations , 2013, PloS one.

[3]  Gangshan Wu,et al.  Molecular dynamics simulations to provide new insights into the asymmetrical ammonium ion movement inside of the [d(G3T4G4)]2 G-quadruplex DNA structure. , 2012, The journal of physical chemistry. B.

[4]  J. Lah,et al.  Energetic basis of human telomeric DNA folding into G-quadruplex structures. , 2012, Journal of the American Chemical Society.

[5]  Ying Yang,et al.  Molecular Dynamics Simulation and Free Energy Calculation Studies of the Binding Mechanism of Allosteric Inhibitors with p38α MAP Kinase , 2011, J. Chem. Inf. Model..

[6]  J. Šponer,et al.  Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process , 2011, Nucleic acids research.

[7]  J. Šponer,et al.  Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing Nucleic Acids Force Fields. , 2009, Journal of chemical theory and computation.

[8]  Hui Li,et al.  Force-induced unfolding of human telomeric G-quadruplex: a steered molecular dynamics simulation study. , 2009, Biochemical and biophysical research communications.

[9]  Timur I. Gaynutdinov,et al.  Structural polymorphism of intramolecular quadruplex of human telomeric DNA: effect of cations, quadruplex-binding drugs and flanking sequences , 2008, Nucleic acids research.

[10]  S. Balasubramanian,et al.  Trisubstituted isoalloxazines as a new class of G-quadruplex binding ligands: small molecule regulation of c-kit oncogene expression. , 2007, Journal of the American Chemical Society.

[11]  A. Phan,et al.  Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution† , 2007, Nucleic acids research.

[12]  J. Šponer,et al.  Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers , 2007 .

[13]  Sarah W. Burge,et al.  Structure of an unprecedented G-quadruplex scaffold in the human c-kit promoter. , 2007, Journal of the American Chemical Society.

[14]  T. Bryan,et al.  Physiological relevance of telomeric G‐quadruplex formation: a potential drug target , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[15]  N. Maizels,et al.  Dynamic roles for G4 DNA in the biology of eukaryotic cells , 2006, Nature Structural &Molecular Biology.

[16]  A. Phan,et al.  Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplexes in K+ solution , 2006, Nucleic acids research.

[17]  Sarah W. Burge,et al.  Quadruplex DNA: sequence, topology and structure , 2006, Nucleic acids research.

[18]  L. Hurley,et al.  Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter. , 2006, Journal of the American Chemical Society.

[19]  Roger A. Jones,et al.  An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. , 2006, Journal of the American Chemical Society.

[20]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[21]  Jan Postberg,et al.  Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo , 2005, Nature Structural &Molecular Biology.

[22]  Stephen Neidle,et al.  Putative DNA quadruplex formation within the human c-kit oncogene. , 2005, Journal of the American Chemical Society.

[23]  P. Bolton,et al.  Vertebrate telomere repeat DNAs favor external loop propeller quadruplex structures in the presence of high concentrations of potassium , 2005, Nucleic acids research.

[24]  Jaroslav Koca,et al.  Molecular dynamics simulations of Guanine quadruplex loops: advances and force field limitations. , 2004, Biophysical journal.

[25]  John Mongan,et al.  Interactive essential dynamics , 2004, J. Comput. Aided Mol. Des..

[26]  G. Parkinson,et al.  The structure of telomeric DNA. , 2003, Current opinion in structural biology.

[27]  D. Bearss,et al.  Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Šponer,et al.  Structural dynamics and cation interactions of DNA quadruplex molecules containing mixed guanine/cytosine quartets revealed by large-scale MD simulations. , 2001, Journal of the American Chemical Society.

[29]  J. Šponer,et al.  NANOSECOND MOLECULAR DYNAMICS SIMULATIONS OF PARALLEL AND ANTIPARALLEL GUANINE QUADRUPLEX DNA MOLECULES , 1999 .

[30]  J. Langmore,et al.  Long G Tails at Both Ends of Human Chromosomes Suggest a C Strand Degradation Mechanism for Telomere Shortening , 1997, Cell.

[31]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[32]  L. S. Cram,et al.  A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[33]  K. Sharp,et al.  Calculating the electrostatic potential of molecules in solution: Method and error assessment , 1988 .

[34]  T. Pinnavaia,et al.  Alkali metal ion specificity in the solution ordering of a nucleotide, 5'-guanosine monophosphate , 1978 .

[35]  Daniel Svozil,et al.  Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. , 2007, Biophysical journal.

[36]  J. R. Williamson,et al.  G-quartet structures in telomeric DNA. , 1994, Annual review of biophysics and biomolecular structure.