Large negative magnetoresistance in reactive sputtered polycrystalline GdNx films

Polycrystalline ferromagnetic GdNx films were fabricated at different N2 flow rates (fN2) to modify N-vacancy concentration so as to study its influence on electrotransport. Metal-semiconductor transition appears at Curie temperature (TC) of ∼40 K. Temperature-dependent magnetoresistance (MR) shows a peak at TC. The films at fN2 = 5, 10, 15, and 20 sccm show MR of −38%, −42%, −46%, and −86% at 5 K and 50 kOe, respectively. Above 15 K, MR is from colossal MR and from both colossal and tunneling MR below 15 K. The enhanced MR at fN2 = 20 sccm is attributed to large spin polarization of half-metallicity in GdNx with low N vacancies.

[1]  W. Mi,et al.  A comparative study of transport properties in polycrystalline and epitaxial chromium nitride films , 2013 .

[2]  Y. Cordier,et al.  Role of magnetic polarons in ferromagnetic GdN , 2012, 1210.3441.

[3]  T. Kita,et al.  Ferromagnetic properties of GdN thin films studied by temperature dependent circular polarized spectroscopy , 2012 .

[4]  Yingchun Cheng,et al.  Ferromagnetic half-metallic characteristic in bulk Ni0.5M0.5O (M=Cu, Zn and Cd): A GGA+U study , 2012 .

[5]  W. Mi,et al.  Magnetic properties and Hall effect of reactive sputtered iron nitride nanocrystalline films , 2011 .

[6]  N. Plank,et al.  Enhanced Curie temperature in N-deficient GdN , 2011 .

[7]  M. Blamire,et al.  Structural evolution and competing magnetic orders in polycrystalline GdN films , 2011 .

[8]  N. Plank,et al.  Epitaxial growth of GdN on silicon substrate using an AlN buffer layer , 2010 .

[9]  S. M. Durbin,et al.  Growth and properties of epitaxial GdN , 2009 .

[10]  A. Gossard,et al.  GdN (1 1 1) heteroepitaxy on GaN (0 0 0 1) by N2 plasma and NH3 molecular beam epitaxy , 2009 .

[11]  M. Alouani,et al.  Magnetic anisotropy in Gd, GdN, and GdFe 2 tuned by the energy of gadolinium 4 f states , 2009 .

[12]  W. Lambrecht,et al.  Magnetic exchange interactions in the gadolinium pnictides from first principles , 2008 .

[13]  E. Tsymbal,et al.  Electronic, magnetic and transport properties of rare-earth monopnictides , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  H. Bai,et al.  Microstructure, magnetic and magneto-transport properties of polycrystalline Fe3O4 films , 2007 .

[15]  Hui Liu,et al.  Evolution of structure, magnetic and transport properties of sputtered films from Fe to Fe3O4 , 2006 .

[16]  P. Larson,et al.  Electronic structure of Gd pnictides calculated within the LSDA + U approach , 2006 .

[17]  H. Trodahl,et al.  Semiconducting ground state of GdN thin films , 2006 .

[18]  E. Tsymbal,et al.  Magnetic ordering in Gd monopnictides: Indirect exchange versus superexchange interaction , 2006 .

[19]  K. Fauth,et al.  GdN thin films: Bulk and local electronic and magnetic properties , 2005 .

[20]  P. Dowben,et al.  Strain induced half-metal to semiconductor transition in GdN. , 2005, Physical review letters.

[21]  G. Gorodetsky,et al.  Low-temperature resistivity minimum in ceramic manganites , 2000, cond-mat/0007363.

[22]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[23]  I. Mazin How to Define and Calculate the Degree of Spin Polarization in Ferromagnets , 1998, cond-mat/9812327.

[24]  I. Gordon,et al.  Spin dependent hopping and colossal negative magnetoresistance in epitaxial Nd0.52Sr0.48MnO3 films in fields up to 50 T , 1998 .

[25]  G. Kido,et al.  Magnetic properties of stoichiometric Gd monopnictides , 1997 .

[26]  D. Xing,et al.  Tunnel-type giant magnetoresistance in the granular perovskite La 0.85 Sr 0.15 MnO 3 , 1997 .

[27]  J. Coey,et al.  Colossal magnetoresistance of the variable range hopping regime in the manganites , 1997 .

[28]  J. Coey,et al.  Magnetic localization in mixed-valence manganites , 1997 .

[29]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[30]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[31]  Chien,et al.  Proximity effects in superconductor/insulating-ferromagnet NbN/GdN multilayers. , 1996, Physical review letters.

[32]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[33]  D. Li,et al.  Magnetic properties of ferromagnetic GdN , 1994 .

[34]  P. Wachter,et al.  Magnetic interaction and carrier concentration in GdN and GdN1−xOx , 1980 .

[35]  M. Kuznietz Effect of Substitutional Anions on the Magnetic Properties of the Mononitrides of Uranium and Gadolinium , 1971 .

[36]  H. Alperin,et al.  Magnetic Properties and Structure of GdN and GdN1−xOx , 1970 .

[37]  W. Wallace,et al.  Magnetic Characteristics of Gadolinium, Praseodymium, and Thulium Nitrides , 1965 .

[38]  P. Junod,et al.  Influence of crystal fields on the magnetic properties of the rare-earth nitrides , 1965 .

[39]  P. Junod,et al.  FERRO- AND METAMAGNETISM OF RARE EARTH COMPOUNDS , 1963 .