Benchmarking on bifurcation and localization in J2 plasticity for plane stress and plane strain conditions

This paper studies the phenomenon of strain bifurcation and localization in J2 plasticity under plane stress and plane strain conditions. Necessary conditions for the outcome of bifurcation, localization, stress boundedness and decohesion are analytically established. It is shown that the explicit consideration of these conditions allows for the determination of localization angles in certain situations of interest that can be used to conduct benchmark tests on finite element formulations. The relative merits of irreducible, (stabilized) mixed and (displacement and/or strain) enhanced formulations are discussed. Numerical examples show that the mixed displacement/pressure formulation is to be preferred to the standard irreducible schemes in order to predict correct failure mechanisms with localized patterns of plastic deformation. Mixed elements are shown to be practically free from mesh directional bias dependence.

[1]  N. S. Ottosen,et al.  Properties of discontinuous bifurcation solutions in elasto-plasticity , 1991 .

[2]  Kaspar Willam,et al.  Localized failure analysis in elastoplastic Cosserat continua , 1998 .

[3]  C. A. Saracibar,et al.  A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations , 2002 .

[4]  A. Huespe,et al.  Stabilized Mixed Finite Elements With Embedded Strong Discontinuities for Shear Band Modeling , 2006 .

[5]  Paul Steinmann,et al.  Finite-Element Analysis of Elastoplastic Discontinuities , 1994 .

[6]  Francisco Armero,et al.  Finite elements with embedded strong discontinuities for the modeling of failure in solids , 2007 .

[7]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[8]  A. Huespe,et al.  From continuum mechanics to fracture mechanics: the strong discontinuity approach , 2002 .

[9]  M. Cervera,et al.  A smeared‐embedded mesh‐corrected damage model for tensile cracking , 2008 .

[10]  J. Oliver A consistent characteristic length for smeared cracking models , 1989 .

[11]  Miguel Cervera,et al.  Softening, localization and stabilization: capture of discontinuous solutions in J2 plasticity , 2004 .

[12]  T. Thomas Plastic Flow and Fracture in Solids , 1958 .

[13]  Miguel Cervera,et al.  On the orthogonal subgrid scale pressure stabilization of finite deformation J2 plasticity , 2006 .

[14]  Jörn Mosler,et al.  3D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations , 2003 .

[15]  M. Jirásek,et al.  Process zone resolution by extended finite elements , 2003 .

[16]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[17]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[18]  Osvaldo L. Manzoli,et al.  A general technique to embed non-uniform discontinuities into standard solid finite elements , 2006 .

[19]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[20]  R. Codina Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .

[21]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[22]  Miguel Cervera,et al.  Size effect and localization in J2 plasticity , 2009 .

[23]  A. Huespe,et al.  Continuum approach to the numerical simulation of material failure in concrete , 2004 .

[24]  Jörn Mosler,et al.  On the efficient implementation of an elastoplastic damage model for large-scale analyses of material failure: a multiscale approach , 2005 .

[25]  Milan Jirásek,et al.  Comparative study on finite elements with embedded discontinuities , 2000 .

[26]  M. Cervera An orthotropic mesh corrected crack model , 2008 .

[27]  C. A. Saracibar,et al.  Mixed linear/linear simplicial elements for incompressible elasticity and plasticity , 2003 .

[28]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[29]  R. Codina,et al.  A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation , 1997 .

[30]  Miguel Cervera,et al.  Shear band localization via local J2 continuum damage mechanics , 2004 .

[31]  R. Hill Acceleration waves in solids , 1962 .

[32]  Alfredo Edmundo Huespe,et al.  Continuum approach to material failure in strong discontinuity settings , 2004 .

[33]  Miguel Cervera,et al.  A stabilized formulation for incompressible plasticity using linear triangles and tetrahedra , 2004 .

[34]  Kaspar Willam,et al.  Constitutive Models for Engineering Materials , 2003 .

[35]  E. T. S. Enginyers de Camins,et al.  Strong discontinuities and continuum plasticity models : the strong discontinuity approach , 1999 .

[36]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[37]  Kenneth Runesson,et al.  Discontinuous bifurcations of elastic-plastic solutions at plane stress and plane strain , 1991 .

[38]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[39]  Elena Benvenuti,et al.  A regularized XFEM framework for embedded cohesive interfaces , 2008 .

[40]  R. Hill A general theory of uniqueness and stability in elastic-plastic solids , 1958 .