The Practice of Finitism: Epsilon Calculus and Consistency Proofs in Hilbert's Program
暂无分享,去创建一个
[1] W. Ackermann,et al. Grundzuge der Theoretischen Logik , 1928 .
[2] J. Neumann. Zur Hilbertschen Beweistheorie , 1927 .
[3] G. Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .
[4] J. Ferreirós. From Frege to Gödel. A Source Book in Mathematical Logic, 1879¿1931: By Jean van Heijenoort. Cambridge, MA (Harvard University Press). 1967; new paperback edn., 2002. 664 pages, 1 halftone. ISBN: 0-674-32449-8. $27.95 , 2004 .
[5] D. Hilbert,et al. Probleme der Grundlegung der Mathematik , 1930 .
[6] G. Mints,et al. Gentzen-type systems and Hilbert's epsilon substitution method. I , 1995 .
[7] Paolo Mancosu. Between Russell and Hilbert: Behmann on the foundations of mathematics , 1999, Bull. Symb. Log..
[8] Wilhelm Ackermann,et al. Zur Widerspruchsfreiheit der Zahlentheorie , 1940 .
[9] W. Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen , 1928 .
[10] D. Hilbert. Axiomatisches Denken , 1917 .
[11] D. Hilbert. Über das Unendliche , 1926 .
[12] William W. Tait,et al. The substitution method , 1965, Journal of Symbolic Logic.
[13] Wilfried Sieg,et al. Hilbert's Programs: 1917–1922 , 1999, Bulletin of Symbolic Logic.
[14] Gesammelte Abhandlungen , 1906, Nature.
[15] Probleme der mathematischen Logik , 1956 .
[16] R. Dedekind,et al. Was sind und was sollen die Zahlen? / von Richard Dedekind , 1888 .
[17] D. Hilbert. Die grundlagen der mathematik , 1928 .
[18] D. Hilbert. Die grundlagen der mathematik , 1928 .
[19] Ivor Grattan-Guinness. The Search for Mathematical Roots, 1870-1940 , 2000 .
[20] Richard Zach,et al. Completeness Before Post: Bernays, Hilbert, and the Development of Propositional Logic , 1999, Bulletin of Symbolic Logic.
[21] F. J. Pelletier,et al. 316 Notre Dame Journal of Formal Logic , 1982 .
[22] S. Yi,et al. IN MEMORIAM , 2012, Chemistry of Heterocyclic Compounds.
[23] David Hilbert,et al. Über die Grundlagen der Logik und der Arithmetik , 1905 .
[24] Paolo Mancosu,et al. Between Vienna and Berlin: The Immediate Reception of Godel's Incompleteness Theorems , 1999 .
[25] W. Tait. REMARKS ON FINITISM , 2001 .
[26] J. Dawson,et al. The Reception of Gödel's Incompleteness Theorems , 1984, PSA Proceedings of the Biennial Meeting of the Philosophy of Science Association.
[27] Wilhelm Ackermann,et al. Begründung des „tertium non datur” mittels der Hilbertschen Theorie der Widerspruchsfreiheit , 1925 .
[28] L. M.-T.. Grundzüge der theoretischen Logik , 1929, Nature.
[29] Richard Zach. Numbers and functions in Hilbert's finitism , 1998 .
[30] A. Leisenring. Mathematical logic and Hilbert's ε-symbol , 1971 .
[31] Grigori Mints,et al. Epsilon substitution method for elementary analysis , 1996, Arch. Math. Log..
[32] J. V. Evra. :The Search for Mathematical Roots, 1870–1940: Logics, Set Theories, and the Foundations of Mathematics from Cantor through Russell to Gödel , 2003 .
[33] J. Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .
[34] David Hilbert. Neubegründung der Mathematik. Erste Mitteilung , 1922 .
[35] David Hilbert. Die logischen Grundlagen der Mathematik , 1922 .
[36] A. Kosinski,et al. :From Kant to Hilbert: A Source Book in the Foundations of Mathematics , 2003 .
[37] Hans Hermes. In memoriam: Wilhelm Ackermann (1896-1962) , 1967, Notre Dame J. Formal Log..
[38] David Hilbert. Neubegründung der Mathematik. Erste Mitteilung , 1922 .
[39] Wilhelm Ackermann,et al. Solvable Cases Of The Decision Problem , 1954 .
[40] Paolo Mancosu,et al. From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s , 1997 .
[41] Hao Wang,et al. Grigori Mints Thoralf Skolem and the Epsilon Substitution Method for Predicate Logic * , 1997 .
[42] G. A. Miller,et al. MATHEMATISCHE ZEITSCHRIFT. , 1920, Science.
[43] Wilhelm Ackermann. Über die Erfüllbarkeit gewisser Zählausdrücke , 1928 .
[44] P. Bernays,et al. Grundlagen der Mathematik , 1934 .
[45] R. Dedekind. Essays on the theory of numbers , 1963 .
[46] G. B. M.. Principia Mathematica , 1911, Nature.