The Practice of Finitism: Epsilon Calculus and Consistency Proofs in Hilbert's Program

After a brief flirtation with logicism around 1917, David Hilbertproposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays andWilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for everstronger and more comprehensive areas of mathematics, and finitisticproofs of consistency of these systems. Early advances in these areaswere made by Hilbert (and Bernays) in a series of lecture courses atthe University of Göttingen between 1917 and 1923, and notably in Ackermann's dissertation of 1924. The main innovation was theinvention of the ∈-calculus, on which Hilbert's axiom systemswere based, and the development of the ∈-substitution methodas a basis for consistency proofs. The paper traces the developmentof the ``simultaneous development of logic and mathematics'' throughthe ∈-notation and provides an analysis of Ackermann'sconsistency proofs for primitive recursive arithmetic and for thefirst comprehensive mathematical system, the latter using thesubstitution method. It is striking that these proofs use transfiniteinduction not dissimilar to that used in Gentzen's later consistencyproof as well as non-primitive recursive definitions, and that thesemethods were accepted as finitistic at the time.

[1]  W. Ackermann,et al.  Grundzuge der Theoretischen Logik , 1928 .

[2]  J. Neumann Zur Hilbertschen Beweistheorie , 1927 .

[3]  G. Gentzen Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .

[4]  J. Ferreirós From Frege to Gödel. A Source Book in Mathematical Logic, 1879¿1931: By Jean van Heijenoort. Cambridge, MA (Harvard University Press). 1967; new paperback edn., 2002. 664 pages, 1 halftone. ISBN: 0-674-32449-8. $27.95 , 2004 .

[5]  D. Hilbert,et al.  Probleme der Grundlegung der Mathematik , 1930 .

[6]  G. Mints,et al.  Gentzen-type systems and Hilbert's epsilon substitution method. I , 1995 .

[7]  Paolo Mancosu Between Russell and Hilbert: Behmann on the foundations of mathematics , 1999, Bull. Symb. Log..

[8]  Wilhelm Ackermann,et al.  Zur Widerspruchsfreiheit der Zahlentheorie , 1940 .

[9]  W. Ackermann Zum Hilbertschen Aufbau der reellen Zahlen , 1928 .

[10]  D. Hilbert Axiomatisches Denken , 1917 .

[11]  D. Hilbert Über das Unendliche , 1926 .

[12]  William W. Tait,et al.  The substitution method , 1965, Journal of Symbolic Logic.

[13]  Wilfried Sieg,et al.  Hilbert's Programs: 1917–1922 , 1999, Bulletin of Symbolic Logic.

[14]  Gesammelte Abhandlungen , 1906, Nature.

[15]  Probleme der mathematischen Logik , 1956 .

[16]  R. Dedekind,et al.  Was sind und was sollen die Zahlen? / von Richard Dedekind , 1888 .

[17]  D. Hilbert Die grundlagen der mathematik , 1928 .

[18]  D. Hilbert Die grundlagen der mathematik , 1928 .

[19]  Ivor Grattan-Guinness The Search for Mathematical Roots, 1870-1940 , 2000 .

[20]  Richard Zach,et al.  Completeness Before Post: Bernays, Hilbert, and the Development of Propositional Logic , 1999, Bulletin of Symbolic Logic.

[21]  F. J. Pelletier,et al.  316 Notre Dame Journal of Formal Logic , 1982 .

[22]  S. Yi,et al.  IN MEMORIAM , 2012, Chemistry of Heterocyclic Compounds.

[23]  David Hilbert,et al.  Über die Grundlagen der Logik und der Arithmetik , 1905 .

[24]  Paolo Mancosu,et al.  Between Vienna and Berlin: The Immediate Reception of Godel's Incompleteness Theorems , 1999 .

[25]  W. Tait REMARKS ON FINITISM , 2001 .

[26]  J. Dawson,et al.  The Reception of Gödel's Incompleteness Theorems , 1984, PSA Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[27]  Wilhelm Ackermann,et al.  Begründung des „tertium non datur” mittels der Hilbertschen Theorie der Widerspruchsfreiheit , 1925 .

[28]  L. M.-T. Grundzüge der theoretischen Logik , 1929, Nature.

[29]  Richard Zach Numbers and functions in Hilbert's finitism , 1998 .

[30]  A. Leisenring Mathematical logic and Hilbert's ε-symbol , 1971 .

[31]  Grigori Mints,et al.  Epsilon substitution method for elementary analysis , 1996, Arch. Math. Log..

[32]  J. V. Evra :The Search for Mathematical Roots, 1870–1940: Logics, Set Theories, and the Foundations of Mathematics from Cantor through Russell to Gödel , 2003 .

[33]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[34]  David Hilbert Neubegründung der Mathematik. Erste Mitteilung , 1922 .

[35]  David Hilbert Die logischen Grundlagen der Mathematik , 1922 .

[36]  A. Kosinski,et al.  :From Kant to Hilbert: A Source Book in the Foundations of Mathematics , 2003 .

[37]  Hans Hermes In memoriam: Wilhelm Ackermann (1896-1962) , 1967, Notre Dame J. Formal Log..

[38]  David Hilbert Neubegründung der Mathematik. Erste Mitteilung , 1922 .

[39]  Wilhelm Ackermann,et al.  Solvable Cases Of The Decision Problem , 1954 .

[40]  Paolo Mancosu,et al.  From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s , 1997 .

[41]  Hao Wang,et al.  Grigori Mints Thoralf Skolem and the Epsilon Substitution Method for Predicate Logic * , 1997 .

[42]  G. A. Miller,et al.  MATHEMATISCHE ZEITSCHRIFT. , 1920, Science.

[43]  Wilhelm Ackermann Über die Erfüllbarkeit gewisser Zählausdrücke , 1928 .

[44]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[45]  R. Dedekind Essays on the theory of numbers , 1963 .

[46]  G. B. M. Principia Mathematica , 1911, Nature.