Three-dimensional dynamic simulation of elastocapillarity

At small scales, the interaction of multicomponent fluids and solids can be dominated by capillary forces giving rise to elastocapillarity. Surface tension may deform or even collapse slender structures and thus, cause important damage in microelectromechanical systems. However, under control, elastocapillarity could be used as a fabrication technique for the design of new materials and structures. Here, we propose a computational model for elastocapillarity that couples nonlinear hyperelastic solids with two-component immiscible fluids described by the Navier–Stokes–Cahn–Hilliard equations. As fluid–structure interaction computational technique, we employ a boundary-fitted approach. For the spatial discretization of the problem we adopt a NURBS-based isogeometric analysis methodology. A strongly-coupled algorithm is proposed for the solution of the problem. The potential of this model is illustrated by solving several numerical examples, including, capillary origami, the static wetting of soft substrates, the deformation of micropillars and the three dimensional wrapping of a liquid droplet.

[1]  L. Mahadevan,et al.  Geometry and physics of wrinkling. , 2003, Physical review letters.

[2]  K. Daniels,et al.  Capillary fracture of soft gels. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Thomas J. R. Hughes,et al.  Extended Truncated Hierarchical Catmull–Clark Subdivision , 2016 .

[4]  Paul B. Reverdy,et al.  Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. , 2006, Physical review letters.

[5]  Adrian Moure,et al.  Computational model for amoeboid motion: Coupling membrane and cytosol dynamics. , 2016, Physical review. E.

[6]  D. Vella,et al.  Multiple equilibria in a simple elastocapillary system , 2012, Journal of Fluid Mechanics.

[7]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[8]  Yuri Bazilevs Computational Fluid — Structure Interaction with Applications , 2014 .

[9]  Thomas J. R. Hughes,et al.  Liquid–vapor phase transition: Thermomechanical theory, entropy stable numerical formulation, and boiling simulations , 2015 .

[10]  N. Goldenfeld,et al.  Phase field model for three-dimensional dendritic growth with fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  H. Gómez,et al.  Computational Phase‐Field Modeling , 2017 .

[12]  Kenji Takizawa,et al.  Computational engineering analysis with the new-generation space–time methods , 2014 .

[13]  Hector Gomez,et al.  Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models , 2014, J. Comput. Phys..

[14]  Jean-François Sigrist Fluid–Structure Interaction , 2015 .

[15]  P. Gennes Wetting: statics and dynamics , 1985 .

[16]  John R. Lister,et al.  Coalescence of liquid drops , 1999, Journal of Fluid Mechanics.

[17]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[18]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[19]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[20]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[21]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[22]  Todd Emrick,et al.  Capillary Wrinkling of Floating Thin Polymer Films , 2007, Science.

[23]  Tayfun E. Tezduyar,et al.  Modeling of Fluid-Structure Interactions with the Space-Time Techniques , 2006 .

[24]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[25]  Michael L. Accorsi,et al.  Parachute fluid-structure interactions: 3-D computation , 2000 .

[26]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[27]  Hector Gomez,et al.  Full-scale, three-dimensional simulation of early-stage tumor growth: The onset of malignancy , 2017 .

[28]  Christopher E. Brennen,et al.  Fundamentals of Multiphase Flow , 2005 .

[29]  John A. Evans,et al.  Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. , 2017, Computer methods in applied mechanics and engineering.

[30]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[31]  Wouter-Jan Rappel,et al.  Coupling actin flow, adhesion, and morphology in a computational cell motility model , 2012, Proceedings of the National Academy of Sciences.

[32]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[33]  Nobufumi Atoda,et al.  Mechanism of Resist Pattern Collapse during Development Process , 1993 .

[34]  E. Dufresne,et al.  Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. , 2012, Physical review letters.

[35]  W. Wulff COMPUTATIONAL METHODS FOR MULTIPHASE FLOW , 1990 .

[36]  F. Arnaud d'Avitaya,et al.  Influence of liquid surface tension on stiction of SOI MEMS , 2004 .

[37]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[38]  S. Tawfick,et al.  Three-dimensional lithography by elasto-capillary engineering of filamentary materials , 2016 .

[39]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[40]  J. Bico,et al.  Elasto-capillarity: deforming an elastic structure with a liquid droplet , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  A. Boudaoud,et al.  Adhesion: Elastocapillary coalescence in wet hair , 2004, Nature.

[42]  Hector Gomez,et al.  Liquid-vapor transformations with surfactants. Phase-field model and Isogeometric Analysis , 2016, J. Comput. Phys..

[43]  H. Stone,et al.  Evaporation of drops on two parallel fibers: influence of the liquid morphology and fiber elasticity. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[44]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[45]  Hugo Casquero,et al.  NURBS-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow , 2017 .

[46]  Guillermo Lorenzo,et al.  Tissue-scale, personalized modeling and simulation of prostate cancer growth , 2016, Proceedings of the National Academy of Sciences.

[47]  P. Bagchi,et al.  Flow of Red Blood Cells in Stenosed Microvessels , 2016, Scientific Reports.

[48]  Yuri Bazilevs,et al.  Aerodynamic and FSI Analysis of Wind Turbines with the ALE-VMS and ST-VMS Methods , 2014 .

[49]  C. Bona-Casas,et al.  A NURBS-based immersed methodology for fluid–structure interaction , 2015 .

[50]  S. Sekulic [Pulmonary surfactant]. , 1974, Plucne bolesti i tuberkuloza.

[51]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[52]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[53]  P. Ajayan,et al.  Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Daniel Bonn,et al.  Hydrodynamics of droplet coalescence. , 2005, Physical review letters.

[55]  Ignasi Colominas,et al.  A mathematical model of tumour angiogenesis: growth, regression and regrowth , 2017, Journal of The Royal Society Interface.

[56]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[57]  A. Jagota,et al.  Elastocapillarity: Surface Tension and the Mechanics of Soft Solids , 2016, 1604.02052.

[58]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[59]  Alessandro Reali,et al.  Isogeometric collocation using analysis-suitable T-splines of arbitrary degree , 2016 .

[60]  Kenji Takizawa,et al.  ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling , 2014 .

[61]  Y. Bazilevs,et al.  Droplet motion driven by tensotaxis , 2017 .

[62]  Bjarne Andresen,et al.  Optimal staging of endoreversible heat engines , 1980 .

[63]  Yongjie Zhang,et al.  A hybrid variational‐collocation immersed method for fluid‐structure interaction using unstructured T‐splines , 2016 .

[64]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[65]  Hector Gomez,et al.  Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff-Love shells , 2017, Comput. Aided Des..

[66]  Eugenia Corvera Poiré,et al.  Tumor Angiogenesis and Vascular Patterning: A Mathematical Model , 2011, PloS one.

[67]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[68]  H. Stone,et al.  Wetting of flexible fibre arrays , 2012, Nature.

[69]  Yuri Bazilevs,et al.  Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment , 2014 .

[70]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[71]  Yuri Bazilevs,et al.  Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion , 2015 .

[72]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[73]  Tayfun E. Tezduyar,et al.  Heart valve flow computation with the integrated Space–Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods , 2017 .

[74]  Thomas J. R. Hughes,et al.  Truncated hierarchical Catmull–Clark subdivision with local refinement , 2015 .

[75]  M. D. De Volder,et al.  Engineering Hierarchical Nanostructures by Elastocapillary Self-assembly Angewandte Reviews , 2022 .

[76]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .