Modeling of the mean Poincaré map on a class of random impact oscillators
暂无分享,去创建一个
[1] E. Dowell,et al. Chaotic Vibrations: An Introduction for Applied Scientists and Engineers , 1988 .
[2] Friedrich Pfeiffer,et al. Rattling models from deterministic to stochastic processes , 1990 .
[3] V. V. Kozlov,et al. Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts , 1991 .
[4] Tomasz Kapitaniak,et al. Chaos In Systems With Noise , 1988 .
[5] C. Sung,et al. Dynamics of a harmonically excited impact damper: Bifurcations and chaotic motion , 1992 .
[6] É. Delassus. Sur les lois du frottement de glissement , 1923 .
[7] A. K. Mallik,et al. IMPACT DAMPERS FOR CONTROLLING SELF-EXCITED OSCILLATION , 1996 .
[8] Earl H. Dowell,et al. Parametric Random Vibration , 1985 .
[9] P. C. Tung,et al. The Dynamics of an Impact Print Hammer , 1988 .
[10] Tomasz Kapitaniak,et al. Experimental Observation Of Intermittent Chaos In A Mechanical System With Impacts , 1994 .
[11] Friedrich Pfeiffer,et al. Seltsame Attraktoren in Zahnradgetrieben , 1988 .
[12] T. K. Caughey,et al. Stability of a Semi-Active Impact Damper: Part II—Periodic Solutions , 1989 .
[13] F. Pfeiffer,et al. STOCHASTIC MODEL ON A RATTLING SYSTEM , 1998 .
[14] C. Gontier,et al. Approach to the periodic and chaotic behaviour of the impact oscillator by a continuation method , 1997 .
[15] C. N. Bapat. Periodic motions of an impact oscillator , 1998 .
[16] N. C. Nigam. Introduction to Random Vibrations , 1983 .
[17] T. Caughey,et al. Stability of a Semi-Active Impact Damper: Part I—Global Behavior , 1989 .