Crosstalk signaling between mitochondrial Ca2+ and ROS.

Mitochondria are central to energy metabolism as the source of much of the cell's ATP, as well as being a hub for cellular Ca2+ signaling. Mitochondrial Ca2+ is a positive effector of ATP synthesis, yet Ca2+ overload can lead to mitochondrial dysfunction and cell death. Moreover, Ca2+ uptake by mitochondria is involved in shaping cellular Ca2+ dynamics by regulating the concentrations of Ca2+ within microdomains between mitochondria and sarco/endoplasmic reticulum and plasma membrane Ca2+ transporters. Reactive oxygen species (ROS) generated as a consequence of ATP production in the mitochondria are important for cellular signaling, yet contribute to oxidative stress and cellular damage. ROS regulate the activity of redox sensitive enzymes and ion channels within the cell, including Ca2+ channels. For both Ca2+ and ROS, a delicate balance exists between the beneficial and detrimental effects on mitochondria. In this review we bring together current data on mitochondrial Ca2+ uptake, ROS generation, and redox modulation of Ca2+ transport proteins. We present a model for crosstalk between Ca2+ and ROS signaling pathways within mitochondrial microdomains.

[1]  Dean P. Jones,et al.  Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stress. , 2007, Archives of biochemistry and biophysics.

[2]  S. Cortassa,et al.  Sequential Opening of Mitochondrial Ion Channels as a Function of Glutathione Redox Thiol Status* , 2007, Journal of Biological Chemistry.

[3]  S. Sheu,et al.  The mitochondrial ryanodine receptor in rat heart: a pharmaco-kinetic profile. , 2007, Biochimica et biophysica acta.

[4]  D. Nicholls,et al.  ‘Mild Uncoupling’ does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress , 2007, Journal of neurochemistry.

[5]  P. Arthur,et al.  Transient Exposure to Hydrogen Peroxide Causes an Increase in Mitochondria-Derived Superoxide As a Result of Sustained Alteration in L-Type Ca2+ Channel Function in the Absence of Apoptosis in Ventricular Myocytes , 2007, Circulation research.

[6]  A. Kowaltowski,et al.  Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production. , 2007, Free radical biology & medicine.

[7]  W. Graier,et al.  Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport , 2007, Nature Cell Biology.

[8]  B. Corry,et al.  Redox control of calcium channels: from mechanisms to therapeutic opportunities. , 2007, Antioxidants & redox signaling.

[9]  E. B. Tahara,et al.  Dihydrolipoyl dehydrogenase as a source of reactive oxygen species inhibited by caloric restriction and involved in Saccharomyces cerevisiae aging , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[10]  H. Gilbert Molecular and cellular aspects of thiol-disulfide exchange. , 2006, Advances in enzymology and related areas of molecular biology.

[11]  I. West,et al.  Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. , 2006, American journal of physiology. Heart and circulatory physiology.

[12]  M. Duchen,et al.  Calcium microdomains and oxidative stress. , 2006, Cell calcium.

[13]  M. Pozo,et al.  Mitochondrial reactive oxygen species and Ca2+ signaling. , 2006, American journal of physiology. Cell physiology.

[14]  C. Mannella,et al.  Structural and functional features and significance of the physical linkage between ER and mitochondria , 2006, The Journal of cell biology.

[15]  A. Vercesi,et al.  Mitochondrial Ca2+ transport, permeability transition and oxidative stress in cell death: implications in cardiotoxicity, neurodegeneration and dyslipidemias. , 2006, Frontiers in bioscience : a journal and virtual library.

[16]  U. Brandt,et al.  K+-independent Actions of Diazoxide Question the Role of Inner Membrane KATP Channels in Mitochondrial Cytoprotective Signaling* , 2006, Journal of Biological Chemistry.

[17]  Brian O'Rourke,et al.  Elevated Cytosolic Na+ Decreases Mitochondrial Ca2+ Uptake During Excitation–Contraction Coupling and Impairs Energetic Adaptation in Cardiac Myocytes , 2006, Circulation research.

[18]  A. Zima,et al.  Redox regulation of cardiac calcium channels and transporters. , 2006, Cardiovascular research.

[19]  J. Rydström Mitochondrial transhydrogenase--a key enzyme in insulin secretion and, potentially, diabetes. , 2006, Trends in biochemical sciences.

[20]  Jie Liu,et al.  Cross-talk between calcium and reactive oxygen species signaling , 2006, Acta Pharmacologica Sinica.

[21]  Erika Davies,et al.  Ca2+-dependent Control of the Permeability Properties of the Mitochondrial Outer Membrane and Voltage-dependent Anion-selective Channel (VDAC)* , 2006, Journal of Biological Chemistry.

[22]  J. Hirst,et al.  The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Vinogradov,et al.  Generation of superoxide by the mitochondrial Complex I. , 2006, Biochimica et biophysica acta.

[24]  N. Petrovic,et al.  Uncoupling proteins: a role in protection against reactive oxygen species--or not? , 2006, Biochimica et biophysica acta.

[25]  S. Nadtochiy,et al.  Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: implications for pathology and cardioprotection. , 2006, The Biochemical journal.

[26]  F. Laurindo,et al.  Ischemic preconditioning requires increases in reactive oxygen release independent of mitochondrial K+ channel activity. , 2006, Free radical biology & medicine.

[27]  D. Zorov,et al.  Mitochondrial contact sites: their role in energy metabolism and apoptosis. , 2006, Biochimica et biophysica acta.

[28]  C. Chinopoulos,et al.  Calcium, mitochondria and oxidative stress in neuronal pathology , 2006, The FEBS journal.

[29]  Brian O'Rourke,et al.  The mitochondrial origin of postischemic arrhythmias. , 2005, The Journal of clinical investigation.

[30]  Shin-Young Ryu,et al.  Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. , 2005, Biochimica et biophysica acta.

[31]  D. Nicholls Mitochondria and calcium signaling. , 2005, Cell calcium.

[32]  U. Brandt,et al.  Superoxide Radical Formation by Pure Complex I (NADH:Ubiquinone Oxidoreductase) from Yarrowia lipolytica* , 2005, Journal of Biological Chemistry.

[33]  J. Jaggar,et al.  Mitochondria-Derived Reactive Oxygen Species Dilate Cerebral Arteries by Activating Ca2+ Sparks , 2005, Circulation research.

[34]  J. Downey,et al.  Protein Kinase G Transmits the Cardioprotective Signal From Cytosol to Mitochondria , 2005, Circulation research.

[35]  M. Brand,et al.  Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. , 2005, Cell metabolism.

[36]  K. Petersen,et al.  Mitochondrial dysfunction and type 2 diabetes , 2005, Current diabetes reports.

[37]  P. Bernardi,et al.  Properties of the Permeability Transition Pore in Mitochondria Devoid of Cyclophilin D* , 2005, Journal of Biological Chemistry.

[38]  W. Kunz,et al.  Characterization of superoxide production sites in isolated rat brain and skeletal muscle mitochondria. , 2005, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[39]  A. A. Starkov,et al.  Mitochondrial metabolism of reactive oxygen species , 2005, Biochemistry (Moscow).

[40]  A. Vinogradov,et al.  Generation of superoxide-radical by the NADH: Ubiquinone oxidoreductase of heart mitochondria , 2005, Biochemistry (Moscow).

[41]  I. Reynolds,et al.  Fluctuations in mitochondrial membrane potential in single isolated brain mitochondria: modulation by adenine nucleotides and Ca2+. , 2004, Biophysical journal.

[42]  P. Brookes,et al.  Calcium, ATP, and ROS: a mitochondrial love-hate triangle. , 2004, American journal of physiology. Cell physiology.

[43]  A. J. Lambert,et al.  Inhibitors of the Quinone-binding Site Allow Rapid Superoxide Production from Mitochondrial NADH:Ubiquinone Oxidoreductase (Complex I)* , 2004, Journal of Biological Chemistry.

[44]  A. J. Lambert,et al.  Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. , 2004, Free radical biology & medicine.

[45]  G. Fiskum,et al.  Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. , 2004, Cell calcium.

[46]  A. J. Lambert,et al.  Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. , 2004, The Biochemical journal.

[47]  S. Schaefer,et al.  Gender modulation of Ca(2+) uptake in cardiac mitochondria. , 2004, Journal of molecular and cellular cardiology.

[48]  X. Leverve,et al.  Opening of the Mitochondrial Permeability Transition Pore Induces Reactive Oxygen Species Production at the Level of the Respiratory Chain Complex I* , 2004, Journal of Biological Chemistry.

[49]  A. Zima,et al.  Effects of cytosolic NADH/NAD+ levels on sarcoplasmic reticulum Ca2+ release in permeabilized rat ventricular myocytes , 2004, The Journal of physiology.

[50]  A. Zima,et al.  NADH Oxidase Activity of Rat Cardiac Sarcoplasmic Reticulum Regulates Calcium-Induced Calcium Release , 2004, Circulation research.

[51]  A. J. Lambert,et al.  Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. , 2004, Biochemical Society symposium.

[52]  C. Elger,et al.  Characterization of Superoxide-producing Sites in Isolated Brain Mitochondria* , 2004, Journal of Biological Chemistry.

[53]  Dean P. Jones,et al.  The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore , 2004, Nature.

[54]  David E. Clapham,et al.  The mitochondrial calcium uniporter is a highly selective ion channel , 2004, Nature.

[55]  Michael R. Duchen,et al.  Flirting in Little Space: The ER/Mitochondria Ca2+ Liaison , 2004, Science's STKE.

[56]  H. Yamawaki,et al.  Thioredoxin: A Key Regulator of Cardiovascular Homeostasis , 2003, Circulation research.

[57]  Brian O'Rourke,et al.  Synchronized Whole Cell Oscillations in Mitochondrial Metabolism Triggered by a Local Release of Reactive Oxygen Species in Cardiac Myocytes* , 2003, Journal of Biological Chemistry.

[58]  I. Reynolds,et al.  Spontaneous changes in mitochondrial membrane potential in single isolated brain mitochondria. , 2003, Biophysical journal.

[59]  K. Fogarty,et al.  Quantitative analysis of spontaneous mitochondrial depolarizations. , 2003, Biophysical journal.

[60]  L. Partridge,et al.  Superoxide and hydrogen peroxide production by Drosophila mitochondria. , 2003, Free radical biology & medicine.

[61]  C. Oliveira,et al.  Mitochondrial Dysfunction and Reactive Oxygen Species in Excitotoxicity and Apoptosis: Implications for the Pathogenesis of Neurodegenerative Diseases , 2003, Neurochemical Research.

[62]  J. Turrens,et al.  Mitochondrial formation of reactive oxygen species , 2003, The Journal of physiology.

[63]  G. Fiskum,et al.  Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state , 2003, Journal of neurochemistry.

[64]  A. J. Lambert,et al.  A signalling role for 4‐hydroxy‐2‐nonenal in regulation of mitochondrial uncoupling , 2003, The EMBO journal.

[65]  A. Zima,et al.  Differential modulation of cardiac and skeletal muscle ryanodine receptors by NADH , 2003, FEBS letters.

[66]  A. Jekabsone,et al.  Nitric oxide and calcium together inactivate mitochondrial complex I and induce cytochrome c release. , 2003, Journal of molecular and cellular cardiology.

[67]  D. Dobrota,et al.  Free radical-induced protein modification and inhibition of Ca2+-ATPase of cardiac sarcoplasmic reticulum , 2003, Molecular and Cellular Biochemistry.

[68]  G. Fiskum,et al.  Mitochondrial Mechanisms of Neural Cell Death and Neuroprotective Interventions in Parkinson's Disease , 2003, Annals of the New York Academy of Sciences.

[69]  D. Nicholls,et al.  The Relationship between Free and Total Calcium Concentrations in the Matrix of Liver and Brain Mitochondria* , 2003, Journal of Biological Chemistry.

[70]  A. Vercesi,et al.  Ca2+‐induced oxidative stress in brain mitochondria treated with the respiratory chain inhibitor rotenone , 2003, FEBS letters.

[71]  L. Guarente,et al.  Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. , 2003, Current opinion in cell biology.

[72]  E. Cadenas,et al.  Voltage-dependent Anion Channels Control the Release of the Superoxide Anion from Mitochondria to Cytosol* , 2003, The Journal of Biological Chemistry.

[73]  A. Kowaltowski,et al.  Mitochondrial ATP‐sensitive K+ channel opening decreases reactive oxygen species generation , 2003, FEBS letters.

[74]  M. Brand,et al.  Topology of Superoxide Production from Different Sites in the Mitochondrial Electron Transport Chain* , 2002, The Journal of Biological Chemistry.

[75]  B. Merry Molecular mechanisms linking calorie restriction and longevity. , 2002, The international journal of biochemistry & cell biology.

[76]  M. Crompton,et al.  Biphasic translocation of Bax to mitochondria. , 2002, The Biochemical journal.

[77]  R. Balaban Cardiac energy metabolism homeostasis: role of cytosolic calcium. , 2002, Journal of molecular and cellular cardiology.

[78]  P. Brookes,et al.  Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. , 2002, Free radical biology & medicine.

[79]  P. Ping,et al.  Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. , 2002, Circulation research.

[80]  P. Brookes,et al.  Hypothesis: the mitochondrial NO(*) signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase. , 2002, Free radical biology & medicine.

[81]  Lihua He,et al.  Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? , 2002, FEBS letters.

[82]  K. Davies,et al.  Calcium and oxidative stress: from cell signaling to cell death. , 2002, Molecular immunology.

[83]  Sten Orrenius,et al.  Cytochrome c release from mitochondria proceeds by a two-step process , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Michael Fill,et al.  Ryanodine receptor calcium release channels. , 2002, Physiological reviews.

[85]  J. Stuart,et al.  Superoxide activates mitochondrial uncoupling proteins , 2002, Nature.

[86]  M. Madesh,et al.  VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release , 2001, The Journal of cell biology.

[87]  A. Vercesi,et al.  Oxidative stress in Ca2+‐induced membrane permeability transition in brain mitochondria , 2001, Journal of neurochemistry.

[88]  I. Fridovich,et al.  Subcellular Distribution of Superoxide Dismutases (SOD) in Rat Liver , 2001, The Journal of Biological Chemistry.

[89]  M. L. Genova,et al.  The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron–sulfur cluster N2 , 2001, FEBS letters.

[90]  A Miyawaki,et al.  Beat‐to‐beat oscillations of mitochondrial [Ca2+] in cardiac cells , 2001, The EMBO journal.

[91]  K. Gunter,et al.  Release of Ca 2+ from Mitochondria via the Saturable Mechanisms and the Permeability Transition , 2001, IUBMB life.

[92]  V. Shoshan-Barmatz,et al.  Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. , 2001, The Biochemical journal.

[93]  C. Cooper,et al.  Nitric oxide synthases: structure, function and inhibition. , 2001, The Biochemical journal.

[94]  L. Szweda,et al.  Modulation of Mitochondrial Function by Hydrogen Peroxide* , 2001, The Journal of Biological Chemistry.

[95]  S. Sheu,et al.  Identification of a Ryanodine Receptor in Rat Heart Mitochondria* , 2001, The Journal of Biological Chemistry.

[96]  G. Meissner,et al.  Calmodulin Binding and Inhibition of Cardiac Muscle Calcium Release Channel (Ryanodine Receptor)* , 2001, The Journal of Biological Chemistry.

[97]  G. Salido,et al.  Vanadate inhibits the calcium extrusion in rat pancreatic acinar cells. , 2001, Cellular signalling.

[98]  Freya Q. Schafer,et al.  Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. , 2001, Free radical biology & medicine.

[99]  J. Stamler,et al.  Classes of Thiols That Influence the Activity of the Skeletal Muscle Calcium Release Channel* , 2001, The Journal of Biological Chemistry.

[100]  A E Vercesi,et al.  Mitochondrial permeability transition and oxidative stress , 2001, FEBS letters.

[101]  K. Gunter,et al.  The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria. , 2001, Biochimica et biophysica acta.

[102]  L. Tretter,et al.  Inhibition of Krebs Cycle Enzymes by Hydrogen Peroxide: A Key Role of α-Ketoglutarate Dehydrogenase in Limiting NADH Production under Oxidative Stress , 2000, The Journal of Neuroscience.

[103]  T. Stangler,et al.  Skeletal Muscle Ryanodine Receptor Is a Redox Sensor with a Well Defined Redox Potential That Is Sensitive to Channel Modulators* , 2000, The Journal of Biological Chemistry.

[104]  P. Allen,et al.  Transmembrane Redox Sensor of Ryanodine Receptor Complex* , 2000, The Journal of Biological Chemistry.

[105]  K. Gunter,et al.  Mitochondrial calcium transport: mechanisms and functions. , 2000, Cell calcium.

[106]  M. Madesh,et al.  The machinery of local Ca2+ signalling between sarco‐endoplasmic reticulum and mitochondria , 2000, The Journal of physiology.

[107]  Steven J. Sollott,et al.  Reactive Oxygen Species (Ros-Induced) Ros Release , 2000, The Journal of experimental medicine.

[108]  V. Ferrans,et al.  Role for Mitochondrial Oxidants as Regulators of Cellular Metabolism , 2000, Molecular and Cellular Biology.

[109]  B. Kalyanaraman,et al.  Mitochondrial Aconitase Is a Source of Hydroxyl Radical , 2000, The Journal of Biological Chemistry.

[110]  J. García-Sancho,et al.  Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion , 2000, Nature Cell Biology.

[111]  R. Fink,et al.  Oxidation and reduction of pig skeletal muscle ryanodine receptors. , 1999, Biophysical journal.

[112]  L. Blatter,et al.  Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. , 1999, The Biochemical journal.

[113]  M. Michaelis,et al.  Effects of reactive oxygen species on brain synaptic plasma membrane Ca(2+)-ATPase. , 1999, Free radical biology & medicine.

[114]  A. Vercesi,et al.  Ca2+-induced increased lipid packing and domain formation in submitochondrial particles. A possible early step in the mechanism of Ca2+-stimulated generation of reactive oxygen species by the respiratory chain. , 1999, Biochemistry.

[115]  Shu-sen Liu,et al.  Cooperation of a “Reactive Oxygen Cycle” with The Q Cycle and The Proton Cycle in the Respiratory Chain—Superoxide Generating and Cycling Mechanisms in Mitochondria , 1999, Journal of bioenergetics and biomembranes.

[116]  M Crompton,et al.  The mitochondrial permeability transition pore and its role in cell death. , 1999, The Biochemical journal.

[117]  C. Moraes,et al.  Titrating the Effects of Mitochondrial Complex I Impairment in the Cell Physiology* , 1999, The Journal of Biological Chemistry.

[118]  M. Duchen,et al.  Mitochondria Exert a Negative Feedback on the Propagation of Intracellular Ca2+ Waves in Rat Cortical Astrocytes , 1999, The Journal of cell biology.

[119]  C. Epstein,et al.  Mitochondrial disease in superoxide dismutase 2 mutant mice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[120]  P. Bernardi,et al.  Mitochondrial transport of cations: channels, exchangers, and permeability transition. , 1999, Physiological reviews.

[121]  G. Hajnóczky,et al.  Quasi‐synaptic calcium signal transmission between endoplasmic reticulum and mitochondria , 1999, The EMBO journal.

[122]  Chang-an Yu,et al.  Generation of Superoxide Anion by Succinate-Cytochromec Reductase from Bovine Heart Mitochondria* , 1998, The Journal of Biological Chemistry.

[123]  A. Vercesi,et al.  Ca2+-stimulated mitochondrial reactive oxygen species generation and permeability transition are inhibited by dibucaine or Mg2+. , 1998, Archives of biochemistry and biophysics.

[124]  M. Michaelis,et al.  Sensitivity of the synaptic membrane Na+/Ca2+ exchanger and the expressed NCX1 isoform to reactive oxygen species. , 1998, Biochimica et biophysica acta.

[125]  H. Nakayama,et al.  Effects of hydroxyl radical and sulfhydryl reagents on the open probability of the purified cardiac ryanodine receptor channel incorporated into planar lipid bilayers. , 1998, Biochemical and biophysical research communications.

[126]  D. Zorov,et al.  Role of mitochondrial calcium transport in the control of substrate oxidation , 1998, Molecular and Cellular Biochemistry.

[127]  J. Kourie,et al.  Interaction of reactive oxygen species with ion transport mechanisms. , 1998, American journal of physiology. Cell physiology.

[128]  D. Langley,et al.  Specialized distributions of mitochondria and endoplasmic reticulum proteins define Ca2+ wave amplification sites in cultured astrocytes , 1998, Journal of neuroscience research.

[129]  Lawrence M. Lifshitz,et al.  Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. , 1998, Science.

[130]  S. Cadenas,et al.  The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach , 1998, Journal of Comparative Physiology B.

[131]  E. Neher Vesicle Pools and Ca2+ Microdomains: New Tools for Understanding Their Roles in Neurotransmitter Release , 1998, Neuron.

[132]  C. Hidalgo,et al.  Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells. , 1998, Biophysical journal.

[133]  J. Stamler,et al.  Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. , 1998, Science.

[134]  D. Brdiczka,et al.  Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. , 1998, Biochimica et biophysica acta.

[135]  T. Reinheckel,et al.  Short-term impairment of energy production in isolated rat liver mitochondria by hypoxia/reoxygenation: involvement of oxidative protein modification. , 1997, The Biochemical journal.

[136]  L. Becker,et al.  Oxygen‐Free Radicals Directly Attack the ATP Binding Site of the Cardiac Na+,K+‐ATPase a , 1997, Annals of the New York Academy of Sciences.

[137]  E. Neher,et al.  Linearized Buffered Ca2+ Diffusion in Microdomains and Its Implications for Calculation of [Ca2+] at the Mouth of a Calcium Channel , 1997, The Journal of Neuroscience.

[138]  G. D. Lange,et al.  High Density Distribution of Endoplasmic Reticulum Proteins and Mitochondria at Specialized Ca2+ Release Sites in Oligodendrocyte Processes* , 1997, The Journal of Biological Chemistry.

[139]  A. Nègre-Salvayre,et al.  A role for uncoupling protein‐2 as a regulator of mitochondrial hydrogen peroxide generation , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[140]  C. Misquitta,et al.  Sarco(endo)plasmic reticulum Ca2+ pump isoform SERCA3 is more resistant than SERCA2b to peroxide. , 1997, The American journal of physiology.

[141]  A. Dulhunty,et al.  Actions of sulfhydryl reagents on single ryanodine receptor Ca(2+)-release channels from sheep myocardium. , 1997, The American journal of physiology.

[142]  D. Nicholls The Non-Ohmic Proton Leak—25 Years On , 1997, Bioscience reports.

[143]  B. Herman,et al.  Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species. , 1997, The American journal of physiology.

[144]  A. C. Zable,et al.  Glutathione Modulates Ryanodine Receptor from Skeletal Muscle Sarcoplasmic Reticulum , 1997, The Journal of Biological Chemistry.

[145]  D. Green,et al.  The Release of Cytochrome c from Mitochondria: A Primary Site for Bcl-2 Regulation of Apoptosis , 1997, Science.

[146]  A. Vercesi,et al.  The Role of Reactive Oxygen Species in Mitochondrial Permeability Transition , 1997, Bioscience reports.

[147]  W. Welte,et al.  Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore , 1996, FEBS letters.

[148]  M. Yamaguchi,et al.  H2O2 modulates twitch tension and increases Po of Ca2+ release channel in frog skeletal muscle. , 1996, The American journal of physiology.

[149]  J. Goldhaber Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes. , 1996, The American journal of physiology.

[150]  Xiaodong Wang,et al.  Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome c , 1996, Cell.

[151]  B. Herman,et al.  Mitochondrial free calcium transients during excitation‐contraction coupling in rabbit cardiac myocytes , 1996, FEBS letters.

[152]  B. Hille,et al.  Dominant Role of Mitochondria in Clearance of Large Ca2+ Loads from Rat Adrenal Chromaffin Cells , 1996, Neuron.

[153]  B. Kholodenko,et al.  Calcium indirectly increases the control exerted by the adenine nucleotide translocator over 2-oxoglutarate oxidation in rat heart mitochondria. , 1995, Archives of biochemistry and biophysics.

[154]  A. Thomas,et al.  Effect of oxidized glutathione and temperature on inositol 1,4,5-trisphosphate binding in permeabilized hepatocytes. , 1995, The Biochemical journal.

[155]  S. J. Elliott,et al.  The H2O2‐Generating Enzyme, Xanthine Oxidase, Decreases Luminal Ca2+ Content of the IP3‐Sensitive Ca2+ Store in Vascular Endothelial Cells , 1995, Microcirculation.

[156]  G. Brierley,et al.  The Sodium-Calcium Antiport of Heart Mitochondria Is Not Electroneutral (*) , 1995, The Journal of Biological Chemistry.

[157]  P. Bernardi,et al.  Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane , 1994, Journal of bioenergetics and biomembranes.

[158]  V. Massey Activation of molecular oxygen by flavins and flavoproteins. , 1994, The Journal of biological chemistry.

[159]  A. J. Williams,et al.  Modification of the gating of the cardiac sarcoplasmic reticulum Ca(2+)-release channel by H2O2 and dithiothreitol. , 1994, The American journal of physiology.

[160]  K. Gunter,et al.  Mitochondrial calcium transport: physiological and pathological relevance. , 1994, The American journal of physiology.

[161]  S. Moncada,et al.  Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide , 1994, FEBS letters.

[162]  K. Gunter,et al.  Na(+)-dependent Ca2+ efflux mechanism of heart mitochondria is not a passive Ca2+/2Na+ exchanger. , 1994, The American journal of physiology.

[163]  I. Pessah,et al.  Direct evidence for the existence and functional role of hyperreactive sulfhydryls on the ryanodine receptor-triadin complex selectively labeled by the coumarin maleimide 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin. , 1994, Molecular pharmacology.

[164]  W. Lederer,et al.  Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. , 1993, Science.

[165]  G. Isenberg,et al.  Changes in mitochondrial calcium concentration during the cardiac contraction cycle. , 1993, Cardiovascular research.

[166]  T. Penttilä,et al.  Inhibition of the mitochondrial calcium uniporter by antibodies against a 40-kDa glycorproteinT , 1993, Journal of bioenergetics and biomembranes.

[167]  P. Bernardi,et al.  Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by matrix pH. Evidence that the pore open-closed probability is regulated by reversible histidine protonation. , 1993, Biochemistry.

[168]  M. Berridge Inositol trisphosphate and calcium signalling , 1993, Nature.

[169]  M. Berridge,et al.  The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. , 1992, The Journal of biological chemistry.

[170]  E Neher,et al.  Calcium requirements for secretion in bovine chromaffin cells. , 1992, The Journal of physiology.

[171]  S. Snyder,et al.  Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[172]  M. Duchen,et al.  Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. , 1992, The Biochemical journal.

[173]  M. Berridge,et al.  Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores , 1991, Nature.

[174]  A. Thomas,et al.  Oscillatory cytosolic calcium waves independent of stimulated inositol 1,4,5-trisphosphate formation in hepatocytes. , 1991, The Journal of biological chemistry.

[175]  N. Dhalla,et al.  Alterations in cardiac membrane Ca2+ transport during oxidative stress , 1990, Molecular and Cellular Biochemistry.

[176]  J. Meldolesi,et al.  The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment , 1990, The Journal of cell biology.

[177]  K. Mailer Superoxide radical as electron donor for oxidative phosphorylation of ADP. , 1990, Biochemical and biophysical research communications.

[178]  A. Halestrap,et al.  Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. , 1990, The Biochemical journal.

[179]  T. Gunter,et al.  Mechanisms by which mitochondria transport calcium. , 1990, The American journal of physiology.

[180]  D. Harris,et al.  Control of mitochondrial ATP synthase in heart cells: inactive to active transitions caused by beating or positive inotropic agents. , 1990, Cardiovascular research.

[181]  N. Dhalla,et al.  Mechanism for depression of heart sarcolemmal Ca2+ pump by oxygen free radicals. , 1989, The American journal of physiology.

[182]  K F LaNoue,et al.  Regulation of citric acid cycle by calcium. , 1989, The Journal of biological chemistry.

[183]  G. Salama,et al.  Critical sulfhydryls regulate calcium release from sarcoplasmic reticulum , 1989, Journal of bioenergetics and biomembranes.

[184]  N. Dhalla,et al.  Depression of heart sarcolemmal Ca2+-pump activity by oxygen free radicals. , 1989, The American journal of physiology.

[185]  M. Crompton,et al.  Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. , 1988, European journal of biochemistry.

[186]  G. Krishnamoorthy,et al.  Studies on the electron transfer pathway, topography of iron-sulfur centers, and site of coupling in NADH-Q oxidoreductase. , 1988, The Journal of biological chemistry.

[187]  M. Crompton,et al.  Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. , 1988, The Biochemical journal.

[188]  M. Hess,et al.  Oxygen radical-mediated lipid peroxidation and inhibition of Ca2+-ATPase activity of cardiac sarcoplasmic reticulum. , 1988, Archives of biochemistry and biophysics.

[189]  P. Cobbold,et al.  Fluorescence and bioluminescence measurement of cytoplasmic free calcium. , 1987, The Biochemical journal.

[190]  M. Crompton,et al.  The entrapment of the Ca2+ indicator arsenazo III in the matrix space of rat liver mitochondria by permeabilization and resealing. Na+-dependent and -independent effluxes of Ca2+ in arsenazo III-loaded mitochondria. , 1986, The Biochemical journal.

[191]  M. Crompton,et al.  The reversible Ca2+-induced permeabilization of rat liver mitochondria. , 1986, The Biochemical journal.

[192]  D. Deamer,et al.  Oxidative stress impairs the function of sarcoplasmic reticulum by oxidation of sulfhydryl groups in the Ca2+-ATPase. , 1986, Archives of biochemistry and biophysics.

[193]  C. A. Bailey,et al.  Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. , 1986, The Journal of biological chemistry.

[194]  M. Brand The stoichiometry of the exchange catalysed by the mitochondrial calcium/sodium antiporter. , 1985, The Biochemical journal.

[195]  G. Fiskum,et al.  Intracellular levels and distribution of Ca2+ in digitonin-permeabilized cells. , 1985, Cell calcium.

[196]  J. Puskin,et al.  Mechanism of sodium independent calcium efflux from rat liver mitochondria. , 1983, Biochemistry.

[197]  M. Hess,et al.  Hydrogen peroxide and hydroxyl radical mediation of activated leukocyte depression of cardiac sarcoplasmic reticulum. Participation of the cyclooxygenase pathway. , 1983, Circulation research.

[198]  A. Fabiato,et al.  Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. , 1983, The American journal of physiology.

[199]  T. Sirota,et al.  Isolation and properties of Ca2+-transporting glycoprotein and peptide from beef heart mitochondria , 1982, Journal of bioenergetics and biomembranes.

[200]  H. Lardy,et al.  Ca2+ stimulation of rat liver mitochondrial glycerophosphate dehydrogenase. , 1981, The Journal of biological chemistry.

[201]  E. Cadenas,et al.  Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria. , 1980, The Biochemical journal.

[202]  M. Crompton,et al.  Mitochondrial calcium transport , 1980, FEBS letters.

[203]  B. Bielski,et al.  Glyceraldehyde-3-phosphate dehydrogenase-catalyzed chain oxidation of reduced nicotinamide adenine dinucleotide by perhydroxyl radicals. , 1980, The Journal of biological chemistry.

[204]  A. Lehninger,et al.  The electric charge stoichiometry of respiration-dependent Ca2+ uptake by mitochondria. , 1979, The Journal of biological chemistry.

[205]  G. Graziosi,et al.  Specific inhibition of mitochondrial Ca2+ transport by antibodies directed to the Ca2+ -binding glycoprotein , 1976, Nature.

[206]  A. Murphy Sulfhydryl group modification of sarcoplasmic reticulum membranes. , 1976, Biochemistry.

[207]  H. Saari,et al.  A spectral shift in cytochrome a induced by calcium ions. , 1975, Biochimica et biophysica acta.

[208]  K. Reed,et al.  A low molecular weight ruthenium complex inhibitory to mitochondrial Ca2+ transport , 1974, FEBS letters.

[209]  B. Bielski,et al.  Enzyme-catalyzed free radical reactions with nicotinamide adenine nucleotides. II. Lactate dehydrogenase-catalyzed oxidation of reduced nicotinamide adenine dinucleotide by superoxide radicals generated by xanthine oxidase. , 1974, The Journal of biological chemistry.

[210]  A. Vinogradov,et al.  The initial velocities of calcium uptake by rat liver mitochondria. , 1973, The Journal of biological chemistry.

[211]  B Chance,et al.  The cellular production of hydrogen peroxide. , 1972, The Biochemical journal.

[212]  P. Gazzotti,et al.  Isolation of a soluble Ca 2+ binding glycoprotein from ox liver mitochondria. , 1972, Biochemical and biophysical research communications.

[213]  E. Panfili,et al.  A glycoprotein located in the intermembrane space of rat liver mitochondria , 1971, FEBS letters.

[214]  K. Reed,et al.  Cooperative interactions in energy-dependent accumulation of Ca2+ by isolated rat liver mitochondria. , 1971, Nature: New biology.

[215]  C. Moore,et al.  Specific inhibition of mitochondrial Ca++ transport by ruthenium red. , 1971, Biochemical and biophysical research communications.

[216]  G. Azzone,et al.  The mechanism of anion translocation and pH equilibration in erythrocytes. , 1970, Biochimica et biophysica acta.

[217]  A. Camara,et al.  Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential. , 2007, American journal of physiology. Cell physiology.

[218]  Gabriele Siciliano,et al.  Mitochondrial dysfunction, oxidative stress and neurodegeneration. , 2006, Journal of Alzheimer's disease : JAD.

[219]  I. West,et al.  The direct physiological effects of mitoK(ATP) opening on heart mitochondria. , 2006, American journal of physiology. Heart and circulatory physiology.

[220]  Tullio Pozzan,et al.  Microdomains of intracellular Ca2+: molecular determinants and functional consequences. , 2006, Physiological reviews.

[221]  P. Brookes,et al.  Mitochondrial H(+) leak and ROS generation: an odd couple. , 2005, Free radical biology & medicine.

[222]  P. Brookes,et al.  Role of calcium and superoxide dismutase in sensitizing mitochondria to peroxynitrite-induced permeability transition. , 2004, American journal of physiology. Heart and circulatory physiology.

[223]  M. Beal,et al.  Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. , 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[224]  W. Dröge Free radicals in the physiological control of cell function. , 2002, Physiological reviews.

[225]  J. Stuart,et al.  Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal-muscle mitochondria. , 2002, The Biochemical journal.

[226]  A. Szewczyk,et al.  [Mitochondrial ion channels]. , 2002, Postepy higieny i medycyny doswiadczalnej.

[227]  G. Kroemer [Mitochondrial control of apoptosis]. , 2001, Bulletin de l'Academie nationale de medecine.

[228]  M. Brand,et al.  AMP decreases the efficiency of skeletal-muscle mitochondria. , 2000, The Biochemical journal.

[229]  L. Becker,et al.  Hydroxyl radical inhibits sarcoplasmic reticulum Ca(2+)-ATPase function by direct attack on the ATP binding site. , 1997, Circulation research.

[230]  G. Salama,et al.  Nitric oxide activates skeletal and cardiac ryanodine receptors. , 1997, Cell calcium.

[231]  P. Sulakhe,et al.  Sarcoplasmic reticulum Ca(2+)-pump dysfunction in rat cardiomyocytes briefly exposed to hydroxyl radicals. , 1997, Free radical biology & medicine.

[232]  大津博子 Immunogold Localization of Inositol 1,4,5-Trisphosphate(InsP[3])Receptor in Mouse Cerebellar Purkinje Cells Using Three Monoclonal Antibodies , 1993 .

[233]  J. Mccormack,et al.  Mitochondrial Ca2+ transport and the role of intramitochondrial Ca2+ in the regulation of energy metabolism. , 1993, Developmental neuroscience.

[234]  Y. Suzuki,et al.  Superoxide stimulates IP3-induced Ca2+ release from vascular smooth muscle sarcoplasmic reticulum. , 1992, The American journal of physiology.

[235]  L. Hunyady,et al.  Pyridine nucleotide redox state parallels production of aldosterone in potassium-stimulated adrenal glomerulosa cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[236]  E Carafoli,et al.  The calcium pumping ATPase of the plasma membrane. , 1991, Annual review of physiology.

[237]  H. Bisswanger,et al.  Localization of the alpha-oxoacid dehydrogenase multienzyme complexes within the mitochondrion. , 1990, FEBS letters.

[238]  S. Dimauro,et al.  Mitochondrial diseases. , 1989, Neurologic clinics.

[239]  R. G. Allen,et al.  Relationship between metabolic rate, free radicals, differentiation and aging: a unified theory. , 1985, Basic life sciences.