Generalized symmetric Runge-Kutta methods

In this paper the concept of symmetry for Runge-Kutta methods is generalized to include composite methods. The extrapolations of the usual compositions of a symmetric method ℛ of the form are shown not to beA-stable. However, this limitation can be overcome by considering composite methods of the form where represents a non-symmetric and possiblyL-stable method called a symmetrizer satisfying. While no longer symmetric, these composite methods yet satisfy and thus share with symmetric methods the important property of admitting asymptotic error expansions in even powers of 1/n. Composite methods that are constructed in this way and presented in this paper have implementation costs comparable to that for the symmetric method. They generalize those based on the implicit midpoint and trapezoidal rules used with the standard smoothing formulae and thus extend the class of methods for acceleration techniques of extrapolation and defect correction. A characterization ofL-stable symmetrizers for 2-stage symmetric methods is given and studied for a particular stiff model problem. The analysis suggests that certainL-stable symmetrizers can play an important role in suppressing order defect effects for stiff problems.ZusammenfassungIn dieser Arbeit verallgemeinern wir den Symmetriebegriff für Runge-Kutta-Verfahren auf zusammengesetzte Verfahren. Die übliche Aneinanderreihung symmetrischer Schritte ℛ zu keineA-stabilen Extrapolationsstufen ergibt. Diese Einschränkung läßt sich jedoch mit Hilfe zusammengesetzter Verfahren der Form umgehen, wobei das als “Symmetrizer” bezeichnete nicht-symmetrische und möglicherweiseL-stabile Verfahren die Bedingung erfüllt. Obwohl sie nicht im engeren Sinn symmetrisch sind, erfüllen diese zusammengesetzen Verfahren und haben deshalb wie die symmetrischen Verfahren asymptotische Fehlerentwicklungen in geraden Potenzen von 1/n. Die Implementierung solcher in dieser Arbeit behandelter Verfahren führt zu Kosten, die denen bei symmetrischen Verfahren vergleichbar sind. Diese Verfahren stellen eine Verallgemeinerung der impliziten Mittelpunkt- und Trapezregeln mit Standardglättung dar und erweitern die Methoden, für die Konvergenzbeschleunigung mittels Extrapolation und Defektkorrektur möglich ist. DieL-stabilen Symmetrizer für 2-stufige symmetrische Verfahren werden charakterisiert und an Hand eines speziellen steifen Modellproblems studiert. Die Analyse läßt erwarten, daß gewisseL-stabile Symmetrizer eine wichtige Rolle bei der Unterdrückung von Ordnungsabfalleffekten bei steifen Problemen spielen können.

[1]  Hans J. Stetter,et al.  Asymptotic expansions for the error of discretization algorithms for non-linear functional equations , 1965 .

[2]  Ernst Hairer,et al.  Algebraically Stable and Implementable Runge-Kutta Methods of High Order , 1981 .

[3]  Olof B. Widlund,et al.  A note on unconditionally stable linear multistep methods , 1967 .

[4]  A. Gorgey,et al.  EXTRAPOLATION OF RUNGE KUTTA METHODS , 1989 .

[5]  Rudolf Scherer,et al.  Reflected and transposed Runge-Kutta methods , 1983 .

[6]  B. L. Ehle A-Stable Methods and Padé Approximations to the Exponential , 1973 .

[7]  L. Richardson,et al.  The Deferred Approach to the Limit. Part I. Single Lattice. Part II. Interpenetrating Lattices , 1927 .

[8]  Winfried Auzinger,et al.  Asymptotic error expansions for stiff equations: an analysis for the implicit midpoint and trapezoidal rules in the strongly stiff case , 1989 .

[9]  K. Bohmer Defect Correction Methods: Theory and Applications , 1984 .

[10]  H. Stetter Analysis of Discretization Methods for Ordinary Differential Equations , 1973 .

[11]  William B. Gragg,et al.  On Extrapolation Algorithms for Ordinary Initial Value Problems , 1965 .

[12]  K. Burrage,et al.  Stability Criteria for Implicit Runge–Kutta Methods , 1979 .

[13]  Christoph W. Ueberhuber,et al.  Order Results for Implicit Runge–Kutta Methods Applied to Stiff Systems , 1985 .

[14]  P. Deuflhard,et al.  A semi-implicit mid-point rule for stiff systems of ordinary differential equations , 1983 .

[15]  Robert P. K. Chan,et al.  On symmetric Runge-Kutta methods of high order , 1991, Computing.

[16]  Ernst Hairer,et al.  Asymptotic expansions of the global error of fixed-stepsize methods , 1984 .

[17]  J. Butcher Coefficients for the study of Runge-Kutta integration processes , 1963, Journal of the Australian Mathematical Society.

[18]  Gerhard Wanner,et al.  Runge-Kutta-methods with expansion in even powers of h , 1973, Computing.

[19]  A. Prothero,et al.  On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations , 1974 .

[20]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[21]  Christoph W. Ueberhuber,et al.  Stability Properties of Implicit Runge–Kutta Methods , 1985 .

[22]  Ernst Hairer,et al.  On the Butcher group and general multi-value methods , 1974, Computing.

[23]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[24]  John C. Butcher,et al.  An algebraic theory of integration methods , 1972 .

[25]  R. Jeltsch,et al.  Generalized disks of contractivity for explicit and implicit Runge-Kutta methods , 1979 .

[26]  Christoph W. Ueberhuber,et al.  The Concept of B-Convergence , 1981 .

[27]  M. N. Spijker,et al.  A note onB-stability of Runge-Kutta methods , 1980 .

[28]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[29]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[30]  E. Hairer,et al.  On the stability of semi-implicit methods for ordinary differential equations , 1982 .

[31]  B. Lindberg On smoothing and extrapolation for the trapezoidal rule , 1971 .

[32]  Winfried Auzinger,et al.  Asymptotic error expansions for stiff equations: Applications , 1990, Computing.

[33]  M. Crouzeix Sur laB-stabilité des méthodes de Runge-Kutta , 1979 .

[34]  W. Auzinger ASYMPTOTIC ERROR EXPANSIONS FOR STIFF EQUATIONS . PART 1 : THE STRONGLY STIFF CASE , 2021 .