Simulation of Complex Biomolecular Systems: The Ribosome Challenge.

Large biomolecular systems are at the heart of many essential cellular processes. The dynamics and energetics of an increasing number of these systems are being studied by computer simulations. Pushing the limits of length- and timescales that can be accessed by current hard- and software has expanded the ability to describe biomolecules at different levels of detail. We focus in this review on the ribosome, which exemplifies the close interplay between experiment and various simulation approaches, as a particularly challenging and prototypic nanomachine that is pivotal to cellular biology due to its central role in translation. We sketch widely used simulation methods and demonstrate how the combination of simulations and experiments advances our understanding of the function of the translation apparatus based on fundamental physics. Expected final online publication date for the Annual Review of Biophysics, Volume 52 is May 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

[1]  M. Rodnina Decoding and Recoding of mRNA Sequences by the Ribosome. , 2023, Annual review of biophysics.

[2]  M. Kolář,et al.  Binding of the peptide deformylase on the ribosome surface modulates the exit tunnel interior. , 2022, Biophysical journal.

[3]  Lisa D. Cabrita,et al.  The ribosome stabilises partially folded intermediates of a nascent multi-domain protein , 2022, Nature Chemistry.

[4]  H. Grubmüller,et al.  Estimating ruggedness of free-energy landscapes of small globular proteins from principal component analysis of molecular dynamics trajectories. , 2022, Physical review. E.

[5]  Neva Caliskan,et al.  Thinking Outside the Frame: Impacting Genomes Capacity by Programmed Ribosomal Frameshifting , 2022, Frontiers in Molecular Biosciences.

[6]  A. Korostelev The Structural Dynamics of Translation. , 2022, Annual review of biochemistry.

[7]  Lisa D. Cabrita,et al.  Common sequence motifs of nascent chains engage the ribosome surface and trigger factor , 2021, Proceedings of the National Academy of Sciences.

[8]  A. Ferré-D’Amaré,et al.  Crystal structure of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) frameshifting pseudoknot , 2021, RNA.

[9]  Andrew G. Taube,et al.  Anton 3: Twenty Microseconds of Molecular Dynamics Simulation Before Lunch , 2021, SC21: International Conference for High Performance Computing, Networking, Storage and Analysis.

[10]  Z. Ignatova,et al.  Constraints on error rate revealed by computational study of G•U tautomerization in translation , 2021, Nucleic acids research.

[11]  Lisa D. Cabrita,et al.  Interactions between nascent proteins and the ribosome surface inhibit co-translational folding , 2021, Nature Chemistry.

[12]  H. Grubmüller,et al.  Effects of cryo-EM cooling on structural ensembles , 2021, Nature Communications.

[13]  Daniel A. Nissley,et al.  Universal protein misfolding intermediates can bypass the proteostasis network and remain soluble and less functional , 2021, Nature Communications.

[14]  E. O’Brien,et al.  Ribosome elongation kinetics of consecutively charged residues are coupled to electrostatic force , 2021, bioRxiv.

[15]  E. O’Brien,et al.  The driving force for co-translational protein folding is weaker in the ribosome vestibule due to greater water ordering , 2021, Chemical science.

[16]  Daniel N. Wilson,et al.  Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics , 2021, Nature Communications.

[17]  T. Schlick,et al.  To Knot or Not to Knot: Multiple Conformations of the SARS-CoV-2 Frameshifting RNA Element , 2021, Journal of the American Chemical Society.

[18]  C. Spahn,et al.  Structural basis of early translocation events on the ribosome , 2021, Nature.

[19]  Erik H. Thiede,et al.  A Bayesian approach to extracting free-energy profiles from cryo-electron microscopy experiments , 2021, Scientific Reports.

[20]  R. Efremov,et al.  Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel , 2021, Nature Structural & Molecular Biology.

[21]  P. Whitford,et al.  Diffuse ions coordinate dynamics in a ribonucleoprotein assembly , 2021, bioRxiv.

[22]  Jinzhong Lin,et al.  Annealing synchronizes the 70S ribosome into a minimum-energy conformation , 2021, Proceedings of the National Academy of Sciences.

[23]  E. O’Brien,et al.  Mechanical Forces Have a Range of Effects on the Rate of Ribosome Catalyzed Peptidyl Transfer Depending on Direction. , 2021, The journal of physical chemistry. B.

[24]  Kai-Chun Chang,et al.  Formation of frameshift-stimulating RNA pseudoknots is facilitated by remodeling of their folding intermediates , 2021, Nucleic acids research.

[25]  M. Levitt,et al.  Probing Interplays between Human XBP1u Translational Arrest Peptide and 80S Ribosome , 2021, bioRxiv.

[26]  C. Peter,et al.  Deciphering molecular details of the RAC–ribosome interaction by EPR spectroscopy , 2021, Scientific Reports.

[27]  P. Whitford,et al.  The dynamics of subunit rotation in a eukaryotic ribosome , 2021, bioRxiv.

[28]  H. Grubmüller,et al.  Folding of VemP into translation-arresting secondary structure is driven by the ribosome exit tunnel , 2021, bioRxiv.

[29]  T. Schlick,et al.  To knot or not to knot: Multiple conformations of the SARS-CoV-2 frameshifting RNA element , 2021, bioRxiv.

[30]  Thomas F. Miller,et al.  Coordination of -1 programmed ribosomal frameshifting by transcript and nascent chain features revealed by deep mutational scanning , 2021, bioRxiv.

[31]  L. Kay,et al.  NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function , 2021, Cell.

[32]  N. Kodera,et al.  Direct visualization of translational GTPase factor pool formed around the archaeal ribosomal P-stalk by high-speed AFM , 2020, Proceedings of the National Academy of Sciences of the United States of America.

[33]  P. Whitford,et al.  A steric gate controls P/E hybrid-state formation of tRNA on the ribosome , 2020, Nature Communications.

[34]  Angus E. McMillan,et al.  Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome , 2020, Science.

[35]  T. Schlick,et al.  Structure-altering mutations of the SARS-CoV-2 frameshifting RNA element , 2020, Biophysical Journal.

[36]  Thomas F. Miller,et al.  Force transduction creates long-ranged coupling in ribosomes stalled by arrest peptides , 2020, bioRxiv.

[37]  Rhiju Das,et al.  Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome , 2021, Nature Structural & Molecular Biology.

[38]  T. X. Hoang,et al.  Protein escape at the ribosomal exit tunnel: Effect of the tunnel shape. , 2020, The Journal of chemical physics.

[39]  S. Pressé,et al.  Direct Photon-by-Photon Analysis of Time-Resolved Pulsed Excitation Data using Bayesian Nonparametrics , 2020, bioRxiv.

[40]  Michele Parrinello,et al.  Unified Approach to Enhanced Sampling , 2020, 2007.03055.

[41]  G. von Heijne,et al.  The ribosome modulates folding inside the ribosomal exit tunnel , 2020, bioRxiv.

[42]  E. Schäffer,et al.  Germanium nanospheres for ultraresolution picotensiometry of kinesin motors , 2020, Science.

[43]  C. Bustamante,et al.  Single-Molecule Studies of Protein Folding with Optical Tweezers. , 2020, Annual review of biochemistry.

[44]  J. Tuszynski,et al.  Modeling the structure of the frameshift-stimulatory pseudoknot in SARS-CoV-2 reveals multiple possible conformers , 2020, bioRxiv.

[45]  Daniel A. Nissley,et al.  Electrostatic interactions govern extreme nascent protein ejection times from ribosomes and can delay ribosome recycling. , 2020, Journal of the American Chemical Society.

[46]  N. Grigorieff,et al.  mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding , 2020, bioRxiv.

[47]  R. Sprangers,et al.  Methyl TROSY spectroscopy: A versatile NMR approach to study challenging biological systems. , 2020, Progress in nuclear magnetic resonance spectroscopy.

[48]  M. Rodnina,et al.  Cotranslational Folding of Proteins on the Ribosome , 2020, Biomolecules.

[49]  M. Tsai,et al.  Temperature-resolved Cryo-EM Uncovers Structural Bases of Temperature-dependent Enzyme Functions. , 2019, Journal of the American Chemical Society.

[50]  G. Hummer,et al.  High-resolution EPR distance measurements on RNA and DNA with the non-covalent Ǵ spin label , 2019, Nucleic acids research.

[51]  Christian M. Kaiser,et al.  Energetic dependencies dictate folding mechanism in a complex protein , 2019, Proceedings of the National Academy of Sciences.

[52]  A. Venyaminova,et al.  Exploring the interactions of short RNAs with the human 40S ribosomal subunit near the mRNA entry site by EPR spectroscopy , 2019, Nucleic acids research.

[53]  H. Grubmüller,et al.  tRNA Dissociation from EF-Tu after GTP Hydrolysis: Primary Steps and Antibiotic Inhibition , 2019, Biophysical journal.

[54]  E. Zakharian,et al.  Structural basis of temperature sensation by the TRP channel TRPV3 , 2019, Nature Structural & Molecular Biology.

[55]  H. Grubmüller,et al.  Thermodynamic control of −1 programmed ribosomal frameshifting , 2019, Nature Communications.

[56]  Thomas F. Miller,et al.  Cotranslational folding stimulates programmed ribosomal frameshifting in the alphavirus structural polyprotein , 2019, The Journal of Biological Chemistry.

[57]  Lisa D. Cabrita,et al.  Probing the dynamic stalk region of the ribosome using solution NMR , 2019, Scientific Reports.

[58]  P. Whitford,et al.  Diffusion of tRNA inside the ribosome is position-dependent. , 2019, The Journal of chemical physics.

[59]  Yi Isaac Yang,et al.  Enhanced sampling in molecular dynamics. , 2019, The Journal of chemical physics.

[60]  C. Dobson,et al.  Nature and Regulation of Protein Folding on the Ribosome , 2019, Trends in biochemical sciences.

[61]  Paul D Adams,et al.  cryo_fit: Democratization of Flexible Fitting for Cryo-EM. , 2019, Journal of structural biology.

[62]  Mariana Levi,et al.  Studying ribosome dynamics with simplified models. , 2019, Methods.

[63]  K. Sanbonmatsu Large-scale simulations of nucleoprotein complexes: ribosomes, nucleosomes, chromatin, chromosomes and CRISPR. , 2019, Current opinion in structural biology.

[64]  Martin Fechner,et al.  More bang for your buck: Improved use of GPU nodes for GROMACS 2018 , 2019, J. Comput. Chem..

[65]  Helmut Grubmüller,et al.  Automated cryo-EM structure refinement using correlation-driven molecular dynamics , 2019, eLife.

[66]  P. Whitford,et al.  The energetics of subunit rotation in the ribosome , 2019, Biophysical Reviews.

[67]  G. von Heijne,et al.  Folding pathway of an Ig domain is conserved on and off the ribosome , 2018, Proceedings of the National Academy of Sciences.

[68]  Daniel A. Nissley,et al.  Structural Origins of FRET-Observed Nascent Chain Compaction on the Ribosome. , 2018, The journal of physical chemistry. B.

[69]  Lisa D. Cabrita,et al.  Systematic mapping of free energy landscapes of a growing filamin domain during biosynthesis , 2018, Proceedings of the National Academy of Sciences.

[70]  M. Rodnina,et al.  Translation in Prokaryotes. , 2018, Cold Spring Harbor perspectives in biology.

[71]  Emmanuel Oluwatobi Salawu,et al.  Resolution‐exchanged structural modeling and simulations jointly unravel that subunit rolling underlies the mechanism of programmed ribosomal frameshifting , 2018, Bioinform..

[72]  H. Grubmüller,et al.  Heterogeneous and rate-dependent streptavidin–biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations , 2018, Proceedings of the National Academy of Sciences.

[73]  T. X. Hoang,et al.  Protein escape at the ribosomal exit tunnel: Effects of native interactions, tunnel length, and macromolecular crowding. , 2018, The Journal of chemical physics.

[74]  T. Steitz,et al.  Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. , 2018, Annual review of biochemistry.

[75]  S. Wegner,et al.  Conformational Dynamics of a Single Protein Monitored for 24 h at Video Rate , 2018, Nano letters.

[76]  C. Kalodimos,et al.  Oligomerization of a molecular chaperone modulates its activity , 2018, eLife.

[77]  J. Åqvist,et al.  Complementary charge-based interaction between the ribosomal-stalk protein L7/12 and IF2 is the key to rapid subunit association , 2018, Proceedings of the National Academy of Sciences.

[78]  A. Warshel,et al.  EF-Tu and EF-G are activated by allosteric effects , 2018, Proceedings of the National Academy of Sciences.

[79]  G. Skiniotis,et al.  Alternative Mode of E-Site tRNA Binding in the Presence of a Downstream mRNA Stem Loop at the Entrance Channel. , 2018, Structure.

[80]  Thomas F. Miller,et al.  Forces on nascent polypeptides during membrane insertion and translocation via the Sec translocon , 2018, bioRxiv.

[81]  L. Nilsson,et al.  Computational Study of Uracil Tautomeric Forms in the Ribosome: The Case of Uracil and 5-Oxyacetic Acid Uracil in the First Anticodon Position of tRNA. , 2018, The journal of physical chemistry. B.

[82]  Kien Nguyen,et al.  Quantifying the Relationship between Single-Molecule Probes and Subunit Rotation in the Ribosome. , 2017, Biophysical journal.

[83]  H. Grubmüller,et al.  Molecular simulations of the ribosome and associated translation factors. , 2017, Current opinion in structural biology.

[84]  A. Venyaminova,et al.  Structural rearrangements in mRNA upon its binding to human 80S ribosomes revealed by EPR spectroscopy , 2017, Nucleic acids research.

[85]  J. Åqvist,et al.  Origin of the omnipotence of eukaryotic release factor 1 , 2017, Nature Communications.

[86]  Daniel N. Wilson,et al.  Structural Basis for Polyproline-Mediated Ribosome Stalling and Rescue by the Translation Elongation Factor EF-P. , 2017, Molecular cell.

[87]  Z. Luthey-Schulten,et al.  Evolution of protein-coupled RNA dynamics during hierarchical assembly of ribosomal complexes , 2017, Nature Communications.

[88]  Jingdong Cheng,et al.  The force-sensing peptide VemP employs extreme compaction and secondary structure formation to induce ribosomal stalling , 2017, eLife.

[89]  M. Hegner,et al.  Translation and folding of single proteins in real time , 2017, Proceedings of the National Academy of Sciences.

[90]  H. Stark,et al.  Ribosome dynamics during decoding , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[91]  Connie Y. Wang,et al.  Structurally detailed coarse-grained model for Sec-facilitated co-translational protein translocation and membrane integration , 2017, PLoS Comput. Biol..

[92]  E. Sorin,et al.  Ensemble simulations: folding, unfolding and misfolding of a high-efficiency frameshifting RNA pseudoknot , 2017, Nucleic acids research.

[93]  R. Olsthoorn,et al.  Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for −1 ribosomal frameshifting stimulation , 2016, Scientific Reports.

[94]  T. M. Makarova,et al.  Investigation of ribosomes using molecular dynamics simulation methods , 2016, Biochemistry (Moscow).

[95]  J. Åqvist,et al.  Peptide Release on the Ribosome Involves Substrate-Assisted Base Catalysis , 2016 .

[96]  H. Grubmüller,et al.  The pathway to GTPase activation of elongation factor SelB on the ribosome , 2016, Nature.

[97]  Wolfgang Wintermeyer,et al.  Translocation as continuous movement through the ribosome , 2016, RNA biology.

[98]  M. Bansal,et al.  The role of sequence in altering the unfolding pathway of an RNA pseudoknot: a steered molecular dynamics study. , 2016, Physical chemistry chemical physics : PCCP.

[99]  K. Schulten,et al.  Dynamic Behavior of Trigger Factor on the Ribosome. , 2016, Journal of Molecular Biology.

[100]  E. O’Brien,et al.  Insights into Cotranslational Nascent Protein Behavior from Computer Simulations. , 2016, Annual review of biophysics.

[101]  Daniel N. Wilson,et al.  A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest , 2016, Nature Communications.

[102]  J. Åqvist,et al.  Principles of start codon recognition in eukaryotic translation initiation , 2016, Nucleic acids research.

[103]  Klaus Schulten,et al.  QwikMD — Integrative Molecular Dynamics Toolkit for Novices and Experts , 2016, Scientific Reports.

[104]  D. Thirumalai,et al.  Salt Effects on the Thermodynamics of a Frameshifting RNA Pseudoknot under Tension. , 2016, Journal of molecular biology.

[105]  Carlo Camilloni,et al.  Structural characterization of the interaction of α-synuclein nascent chains with the ribosomal surface and trigger factor , 2016, Proceedings of the National Academy of Sciences.

[106]  Daniel N. Wilson,et al.  Translation regulation via nascent polypeptide-mediated ribosome stalling. , 2016, Current opinion in structural biology.

[107]  M. Rodnina,et al.  Choreography of molecular movements during ribosome progression along mRNA , 2016, Nature Structural &Molecular Biology.

[108]  Ryan L. Hayes,et al.  SMOG 2: A Versatile Software Package for Generating Structure-Based Models , 2016, PLoS Comput. Biol..

[109]  Amy L. Robertson,et al.  A structural ensemble of a ribosome-nascent chain complex during co-translational protein folding , 2016, Nature Structural &Molecular Biology.

[110]  T. X. Hoang,et al.  Folding and escape of nascent proteins at ribosomal exit tunnel. , 2016, The Journal of chemical physics.

[111]  Johan Åqvist,et al.  Conserved Motifs in Different Classes of GTPases Dictate their Specific Modes of Catalysis , 2016 .

[112]  Kien Nguyen,et al.  Steric interactions lead to collective tilting motion in the ribosome during mRNA–tRNA translocation , 2016, Nature Communications.

[113]  Alexander D. MacKerell,et al.  Additive CHARMM force field for naturally occurring modified ribonucleotides , 2016, J. Comput. Chem..

[114]  Helgi I. Ingólfsson,et al.  Martini straight: Boosting performance using a shorter cutoff and GPUs , 2016, Comput. Phys. Commun..

[115]  M. Fedin,et al.  Doubly Spin-Labeled RNA as an EPR Reporter for Studying Multicomponent Supramolecular Assemblies. , 2015, Biophysical journal.

[116]  Jun Zhang,et al.  Mechanisms of ribosome stalling by SecM at multiple elongation steps , 2015, eLife.

[117]  Marina V. Rodnina,et al.  Cotranslational protein folding on the ribosome monitored in real time , 2015, Science.

[118]  Shina Caroline Lynn Kamerlin,et al.  Exceptionally large entropy contributions enable the high rates of GTP hydrolysis on the ribosome , 2015, Scientific Reports.

[119]  Helgi I Ingólfsson,et al.  CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field. , 2015, Journal of chemical theory and computation.

[120]  R. O. Jones,et al.  Density functional theory: Its origins, rise to prominence, and future , 2015 .

[121]  Helgi I. Ingólfsson,et al.  Martini Coarse-Grained Force Field: Extension to RNA. , 2015, Biophysical journal.

[122]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[123]  Helmut Grubmüller,et al.  Dynamic contact network between ribosomal subunits enables rapid large-scale rotation during spontaneous translocation , 2015, Nucleic acids research.

[124]  Rafael C. Bernardi,et al.  Enhanced sampling techniques in molecular dynamics simulations of biological systems. , 2015, Biochimica et biophysica acta.

[125]  K. Schulten,et al.  The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center , 2015, Proceedings of the National Academy of Sciences.

[126]  I. Tinoco,et al.  Mechanical force releases nascent chain–mediated ribosome arrest in vitro and in vivo , 2015, Science.

[127]  Marina V. Rodnina,et al.  Structure of the E. coli ribosome–EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM , 2015, Nature.

[128]  J. Åqvist,et al.  The conformation of a catalytic loop is central to GTPase activity on the ribosome. , 2015, Biochemistry.

[129]  J. Åqvist,et al.  Why base tautomerization does not cause errors in mRNA decoding on the ribosome , 2014, Nucleic acids research.

[130]  M. Bansal,et al.  Local structural and environmental factors define the efficiency of an RNA pseudoknot involved in programmed ribosomal frameshift process. , 2014, The journal of physical chemistry. B.

[131]  M. Rodnina,et al.  Ribosome-induced tuning of GTP hydrolysis by a translational GTPase , 2014, Proceedings of the National Academy of Sciences.

[132]  H. Noller,et al.  Direct measurement of the mechanical work during translocation by the ribosome , 2014, eLife.

[133]  T. Steitz,et al.  A proton wire to couple aminoacyl-tRNA accommodation and peptide bond formation on the ribosome , 2014, Nature Structural &Molecular Biology.

[134]  Bruce A. Shapiro,et al.  Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway , 2014, Nature.

[135]  Klaus Schulten,et al.  Macrolide antibiotics allosterically predispose the ribosome for translation arrest , 2014, Proceedings of the National Academy of Sciences.

[136]  C. Kalodimos,et al.  Structural Basis for Protein Antiaggregation Activity of the Trigger Factor Chaperone , 2014, Science.

[137]  M. Rodnina,et al.  GTP hydrolysis by EF‐G synchronizes tRNA movement on small and large ribosomal subunits , 2014, The EMBO journal.

[138]  Walter Thiel,et al.  Semiempirical quantum–chemical methods , 2014 .

[139]  Z. Luthey-Schulten,et al.  Protein-guided RNA dynamics during early ribosome assembly , 2014, Nature.

[140]  Arieh Warshel,et al.  Quantitative exploration of the molecular origin of the activation of GTPase , 2013, Proceedings of the National Academy of Sciences.

[141]  Carlo Camilloni,et al.  Replica-Averaged Metadynamics. , 2013, Journal of chemical theory and computation.

[142]  H. Grubmüller,et al.  Energy barriers and driving forces in tRNA translocation through the ribosome , 2013, Nature Structural &Molecular Biology.

[143]  D. Tieleman,et al.  Perspective on the Martini model. , 2013, Chemical Society reviews.

[144]  J. Åqvist,et al.  Energetics of activation of GTP hydrolysis on the ribosome , 2013, Nature Communications.

[145]  M. Rodnina,et al.  Dual use of GTP hydrolysis by elongation factor G on the ribosome , 2013, Translation.

[146]  Paul C. Whitford,et al.  Connecting the Kinetics and Energy Landscape of tRNA Translocation on the Ribosome , 2013, PLoS Comput. Biol..

[147]  J. Åqvist,et al.  Bridging the gap between ribosome structure and biochemistry by mechanistic computations. , 2012, Current opinion in structural biology.

[148]  Claus A M Seidel,et al.  A toolkit and benchmark study for FRET-restrained high-precision structural modeling , 2012, Nature Methods.

[149]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[150]  Michele Vendruscolo,et al.  Trigger factor slows co-translational folding through kinetic trapping while sterically protecting the nascent chain from aberrant cytosolic interactions. , 2012, Journal of the American Chemical Society.

[151]  G. Vriend,et al.  Exploring Protein Dynamics Space: The Dynasome as the Missing Link between Protein Structure and Function , 2012, PloS one.

[152]  J. P. Grossman,et al.  Biomolecular simulation: a computational microscope for molecular biology. , 2012, Annual review of biophysics.

[153]  A. Szabó,et al.  Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET , 2012, Proceedings of the National Academy of Sciences.

[154]  Karissa Y Sanbonmatsu,et al.  Computational studies of molecular machines: the ribosome. , 2012, Current opinion in structural biology.

[155]  Weitao Yang,et al.  Challenges for density functional theory. , 2012, Chemical reviews.

[156]  Marina V. Rodnina,et al.  Different substrate-dependent transition states in the active site of the ribosome , 2011, Nature.

[157]  So-Jung Park,et al.  Identification of RNA pseudoknot-binding ligand that inhibits the -1 ribosomal frameshifting of SARS-coronavirus by structure-based virtual screening. , 2011, Journal of the American Chemical Society.

[158]  H. Grubmüller,et al.  Structural Heterogeneity and Quantitative FRET Efficiency Distributions of Polyprolines through a Hybrid Atomistic Simulation and Monte Carlo Approach , 2011, PloS one.

[159]  Michele Vendruscolo,et al.  Transient tertiary structure formation within the ribosome exit port. , 2010, Journal of the American Chemical Society.

[160]  Klaus Schulten,et al.  The role of L1 stalk-tRNA interaction in the ribosome elongation cycle. , 2010, Journal of molecular biology.

[161]  Kai J. Kohlhoff,et al.  Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins. , 2010, Structure.

[162]  Marina V. Rodnina,et al.  Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy , 2010, Nature.

[163]  José N Onuchic,et al.  Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways. , 2010, RNA.

[164]  M. Tuckerman Statistical Mechanics: Theory and Molecular Simulation , 2010 .

[165]  J. F. Atkins,et al.  Frameshifting in alphaviruses: a diversity of 3' stimulatory structures. , 2010, Journal of molecular biology.

[166]  P. Sherwood,et al.  The ribosome catalyzes peptide bond formation by providing high ionic strength , 2010 .

[167]  J. Åqvist,et al.  The transition state for peptide bond formation reveals the ribosome as a water trap , 2010, Proceedings of the National Academy of Sciences.

[168]  Lisa D. Cabrita,et al.  Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy , 2009, Proceedings of the National Academy of Sciences.

[169]  Yong-Gui Gao,et al.  The Crystal Structure of the Ribosome Bound to EF-Tu and Aminoacyl-tRNA , 2009, Science.

[170]  Yong-Gui Gao,et al.  The Structure of the Ribosome with Elongation Factor G Trapped in the Posttranslocational State , 2009, Science.

[171]  V. Ramakrishnan,et al.  Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome , 2009, Nature Structural &Molecular Biology.

[172]  K. Sanbonmatsu,et al.  Stochastic gating and drug-ribosome interactions. , 2009, Journal of molecular biology.

[173]  Walter Thiel,et al.  QM/MM methods for biomolecular systems. , 2009, Angewandte Chemie.

[174]  Jianli Lu,et al.  Electrostatics in the ribosomal tunnel modulate chain elongation rates. , 2008, Journal of molecular biology.

[175]  Vijay S Pande,et al.  Side-chain recognition and gating in the ribosome exit tunnel , 2008, Proceedings of the National Academy of Sciences.

[176]  Joseph D. Puglisi,et al.  Irreversible chemical steps control intersubunit dynamics during translation , 2008, Proceedings of the National Academy of Sciences.

[177]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[178]  James B. Munro,et al.  A new view of protein synthesis: mapping the free energy landscape of the ribosome using single-molecule FRET. , 2008, Biopolymers.

[179]  Taekjip Ha,et al.  Spontaneous intersubunit rotation in single ribosomes. , 2008, Molecular cell.

[180]  Leonardo G. Trabuco,et al.  Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. , 2008, Structure.

[181]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[182]  John SantaLucia,et al.  AMBER Force Field Parameters for the Naturally Occurring Modified Nucleosides in RNA. , 2007, Journal of chemical theory and computation.

[183]  Nathan O'Connor,et al.  Identification of two distinct hybrid state intermediates on the ribosome. , 2007, Molecular cell.

[184]  Paul F Agris,et al.  tRNA's wobble decoding of the genome: 40 years of modification. , 2007, Journal of molecular biology.

[185]  P. Koehl Electrostatics calculations: latest methodological advances. , 2006, Current opinion in structural biology.

[186]  Thomas A Steitz,et al.  Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. , 2005, Molecular cell.

[187]  S. Joseph,et al.  Simulating movement of tRNA into the ribosome during decoding. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[188]  A. Warshel,et al.  What are the roles of substrate-assisted catalysis and proximity effects in peptide bond formation by the ribosome? , 2005, Biochemistry.

[189]  M. DePristo,et al.  Simultaneous determination of protein structure and dynamics , 2005, Nature.

[190]  Patricia L Clark,et al.  Protein folding in the cell: reshaping the folding funnel. , 2004, Trends in biochemical sciences.

[191]  F. Hartl,et al.  Function of Trigger Factor and DnaK in Multidomain Protein Folding Increase in Yield at the Expense of Folding Speed , 2004, Cell.

[192]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[193]  A. Warshel Computer simulations of enzyme catalysis: methods, progress, and insights. , 2003, Annual review of biophysics and biomolecular structure.

[194]  Helmut Grubmüller,et al.  Maximum likelihood trajectories from single molecule fluorescence resonance energy transfer experiments , 2003 .

[195]  M. Rodnina,et al.  Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. , 2003, Journal of molecular biology.

[196]  A. Brigo,et al.  The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology , 2002, Journal of molecular recognition : JMR.

[197]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[198]  J. Šponer,et al.  Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding. , 2001, Journal of molecular biology.

[199]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[200]  K M Merz,et al.  New developments in applying quantum mechanics to proteins. , 2001, Current opinion in structural biology.

[201]  A. Rich,et al.  Specific mutations in a viral RNA pseudoknot drastically change ribosomal frameshifting efficiency. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[202]  T. Pape,et al.  Complete kinetic mechanism of elongation factor Tu‐dependent binding of aminoacyl‐tRNA to the A site of the E.coli ribosome , 1998, The EMBO journal.

[203]  R. Brimacombe,et al.  Visualization of elongation factor Tu on the Escherichia coli ribosome , 1997, Nature.

[204]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[205]  I. Brierley,et al.  Ribosomal frameshifting viral RNAs. , 1995, The Journal of general virology.

[206]  M. Rodnina,et al.  Codon‐dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. , 1995, The EMBO journal.

[207]  M. Karplus,et al.  Molecular dynamics simulations in biology , 1990, Nature.

[208]  H. Berendsen,et al.  COMPUTER-SIMULATION OF MOLECULAR-DYNAMICS - METHODOLOGY, APPLICATIONS, AND PERSPECTIVES IN CHEMISTRY , 1990 .

[209]  Wolfgang Doster,et al.  Dynamical transition of myoglobin revealed by inelastic neutron scattering , 1989, Nature.

[210]  J. F. Atkins,et al.  tRNA anticodon replacement experiments show that ribosomal frameshifting can be caused by doublet decoding. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[211]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[212]  A. Tek,et al.  Molecular Dynamics Simulations Suggest a Non-Doublet Decoding Model of –1 Frameshifting by tRNA Ser3 , 2019 .

[213]  M. Bennati,et al.  High-resolution measurement of long-range distances in RNA: pulse EPR spectroscopy with TEMPO-labeled nucleotides , 2016 .

[214]  Q. Cui,et al.  Density functional tight binding: application to organic and biological molecules , 2014 .

[215]  Xiao Zhu,et al.  Recent developments and applications of the CHARMM force fields , 2012, Wiley interdisciplinary reviews. Computational molecular science.

[216]  Marek Orzechowski,et al.  Mechanical unfolding of the beet western yellow virus -1 frameshift signal. , 2011, Journal of the American Chemical Society.

[217]  C. Kurland,et al.  Translational accuracy and the fitness of bacteria. , 1992, Annual review of genetics.

[218]  H. Frauenfelder,et al.  Conformational substates in proteins. , 1988, Annual review of biophysics and biophysical chemistry.

[219]  N. Go Theoretical studies of protein folding. , 1983, Annual review of biophysics and bioengineering.

[220]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .