A re-evaluation of the run rules xbar chart when the process parameters are unknown

ABSTRACT Run Rules chart are often implemented for process monitoring. The process observations are usually assumed normally distributed, and the process parameters are assumed known. In fact, a very limited number of Phase I samples may only be available to the practitioners to estimate the process parameters, the control chart's properties will vary among different practitioners. Considering this variability, the performance of the Run Rules chart with estimated parameters is investigated. To measure this variability, the standard deviation of average run length (SDARL) is used to evaluate the performance of control chart. The results show that the Run Rules chart requires a much larger amount of Phase I data to sufficiently reduce the between-practitioners variability. Moreover, we also investigate the properties of Run Rules chart with estimated parameters under the non-normal distributed data. Due to the limitation of the amount of Phase I data set in practice, a bootstrap method is applied to design the Run Rules chart. Finally, an example is provided to illustrate the application of the Run Rules chart with estimated parameters.

[1]  Marta B. Quaglino,et al.  Multivariate EWMA control chart with highly asymmetric gamma distributions , 2018 .

[2]  Philippe Castagliola,et al.  Run rules based phase II c and np charts when process parameters are unknown , 2016 .

[3]  Jianfeng Yao,et al.  On the control chart with estimated parameters , 2018 .

[4]  William H. Woodall,et al.  The Conditional In-Control Performance of Self-Starting Control Charts , 2015 .

[5]  William H. Woodall,et al.  Guaranteed conditional performance of the S2 control chart with estimated parameters , 2015 .

[6]  Athanasios C. Rakitzis,et al.  Monitoring exponential data using two-sided control charts with runs rules , 2016 .

[7]  Giovanni Celano,et al.  Comparison of the Xō Chart and the t Chart When the Parameters are Estimated , 2013 .

[8]  Philippe Castagliola,et al.  Some Recent Developments on the Effects of Parameter Estimation on Control Charts , 2014, Qual. Reliab. Eng. Int..

[9]  Stefan H Steiner,et al.  Assessing the effect of estimation error on risk-adjusted CUSUM chart performance. , 2012, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[10]  Donald J. Wheeler,et al.  Detecting a Shift in Process Average: Tables of the Power Function for X Charts , 1983 .

[11]  Giovanni Celano,et al.  Monitoring the ratio of two normal variables using Run Rules type control charts , 2016 .

[12]  Anthony Amicelle,et al.  FINANCIAL SURVEILLANCE , 2012 .

[13]  The L-Chart for Non-Normal Processes , 2005 .

[14]  Giovanni Celano,et al.  The variable parameters T$$^{2}$$2 chart with run rules , 2014 .

[15]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[16]  William H. Woodall,et al.  Another Look at the EWMA Control Chart with Estimated Parameters , 2015 .

[17]  Michael B. C. Khoo,et al.  Optimal designs of the variable sample size and sampling interval X¯ chart when process parameters are estimated , 2015 .

[18]  E. S. Page CONTROL CHARTS WITH WARNING LINES , 1955 .

[19]  Mahmoud A. Mahmoud,et al.  The Performance of the Multivariate Adaptive Exponentially Weighted Moving Average Control Chart with Estimated Parameters , 2016, Qual. Reliab. Eng. Int..

[20]  Connie M. Borror,et al.  Robustness of the EWMA Control Chart to Non-Normality , 1999 .

[21]  Subhabrata Chakraborti,et al.  Improved Shewhart-type Runs-rules Nonparametric Sign Charts , 2014 .

[22]  Tom Burr,et al.  Introduction to Matrix Analytic Methods in Stochastic Modeling , 2001, Technometrics.

[23]  Ying Zhang,et al.  RUN RULES $\bar{X}$ CHARTS WHEN PROCESS PARAMETERS ARE UNKNOWN , 2010 .

[24]  Andrew C. Palm,et al.  Tables of Run Length Percentiles for Determining the Sensitivity of Shewhart Control Charts for Averages with Supplementary Runs Rules , 1990 .

[25]  Joseph J. Pignatiello,et al.  On Estimating X̄ Control Chart Limits , 2001 .

[26]  A. Bissell,et al.  An attempt to unify the theory of quality control procedures , 1978 .

[27]  L. Allison Jones,et al.  The Statistical Design of EWMA Control Charts with Estimated Parameters , 2002 .

[28]  Ronald J. M. M. Does,et al.  The performance of control charts for large non-normally distributed datasets , 2018, Qual. Reliab. Eng. Int..

[29]  Eugenio K. Epprecht,et al.  Effect of the Amount of Phase I Data on the Phase II Performance of S2 and S Control Charts , 2015 .

[30]  Thong Ngee Goh,et al.  Some effective control chart procedures for reliability monitoring , 2002, Reliab. Eng. Syst. Saf..

[31]  Axel Gandy,et al.  Guaranteed Conditional Performance of Control Charts via Bootstrap Methods , 2011, 1111.4180.

[32]  Charles W. Champ,et al.  Exact results for shewhart control charts with supplementary runs rules , 1987 .

[33]  Jyh-Jen Horng Shiau,et al.  Robustness of the EWMA Control Chart to Non-normality for Autocorrelated Processes , 2005 .

[34]  Charles W. Champ,et al.  Using Runs Rules to Monitor an Attribute Chart for a Markov Process , 2012 .

[35]  Philippe Castagliola,et al.  Run length properties of run rules EWMA chart using integral equations , 2019 .

[36]  Marcel F. Neuts,et al.  Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .

[37]  William H. Woodall,et al.  The Use of Control Charts in Health-Care and Public-Health Surveillance , 2006 .

[38]  Charles W. Champ,et al.  The Performance of Exponentially Weighted Moving Average Charts With Estimated Parameters , 2001, Technometrics.

[39]  William H. Woodall,et al.  A Reevaluation of the Adaptive Exponentially Weighted Moving Average Control Chart When Parameters are Estimated , 2015, Qual. Reliab. Eng. Int..

[40]  Giovanni Celano,et al.  THE EXACT RUN LENGTH DISTRIBUTION AND DESIGN OF THE S2 CHART WHEN THE IN-CONTROL VARIANCE IS ESTIMATED , 2009 .

[41]  Fadel M. Megahed,et al.  Statistical Learning Methods Applied to Process Monitoring: An Overview and Perspective , 2016 .

[42]  Philippe Castagliola,et al.  The EWMA median chart with estimated parameters , 2016 .

[43]  Lloyd S. Nelson,et al.  Column: Technical Aids: The Shewhart Control Chart--Tests for Special Causes , 1984 .

[44]  Philippe Castagliola,et al.  The synthetic [Xbar] chart with estimated parameters , 2011 .

[45]  R. Noorossana,et al.  EWMA Control Chart Performance with Estimated Parameters under Non‐normality , 2016, Qual. Reliab. Eng. Int..

[46]  Philippe Castagliola,et al.  Guaranteed conditional design of the median chart with estimated parameters , 2017, Qual. Reliab. Eng. Int..

[47]  Giovanni Celano,et al.  Monitoring the Coefficient of Variation Using Control Charts with Run Rules , 2013 .

[48]  Vaidyanathan Ramaswami,et al.  Introduction to Matrix Analytic Methods in Stochastic Modeling , 1999, ASA-SIAM Series on Statistics and Applied Mathematics.

[49]  William H. Woodall,et al.  The Difficulty in Designing Shewhart X̄ and X Control Charts with Estimated Parameters , 2015 .

[50]  Yuan Cheng,et al.  Phase II synthetic exponential charts and effect of parameter estimation , 2018 .