Foreground Segmentation from Occlusions Using Structure and Motion Recovery

The segmentation of foreground objects in camera images is a fundamental step in many computer vision applications. For visual effect creation, the foreground segmentation is required for the integration of virtual objects between scene elements. On the other hand, camera and scene estimation is needed to integrate the objects perspectively correct into the video.

[1]  Marc Pollefeys,et al.  3D Occlusion Inference from Silhouette Cues , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Richard Szeliski,et al.  Vision Algorithms: Theory and Practice , 2002, Lecture Notes in Computer Science.

[3]  Hujun Bao,et al.  Efficient Non-consecutive Feature Tracking for Structure-from-Motion , 2010, ECCV.

[4]  John P. Lewis,et al.  Issues in adapting research algorithms to stereoscopic visual effects , 2010, 2010 IEEE International Conference on Image Processing.

[5]  Hans-Peter Seidel,et al.  Registration of Sub-Sequence and Multi-Camera Reconstructions for Camera Motion Estimation , 2010, J. Virtual Real. Broadcast..

[6]  Marc Pollefeys,et al.  Multiple view geometry , 2005 .

[7]  Wolfgang Förstner,et al.  Coding Images with Local Features , 2010, International Journal of Computer Vision.

[8]  Thomas Deselaers,et al.  ClassCut for Unsupervised Class Segmentation , 2010, ECCV.

[9]  Luc Van Gool,et al.  Drift detection and removal for sequential structure from motion algorithms , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[11]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[12]  Reinhard Koch,et al.  Visual Modeling with a Hand-Held Camera , 2004, International Journal of Computer Vision.

[13]  Friedrich Fraundorfer,et al.  Integration of Tracked and Recognized Features for Locally and Globally Robust Structure from Motion , 2008, VISAPP.

[14]  Philip H. S. Torr,et al.  VideoTrace: rapid interactive scene modelling from video , 2007, SIGGRAPH 2007.

[15]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[16]  Bodo Rosenhahn,et al.  Feature Trajectory Retrieval with Application to Accurate Structure and Motion Recovery , 2011, ISVC.

[17]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[18]  Andrew W. Fitzgibbon,et al.  Automatic Video Segmentation using Spatiotemporal T-Junctions , 2006, BMVC.

[19]  Andrew Zisserman,et al.  Multiple View Geometry , 1999 .

[20]  Takeo Kanade,et al.  Background Subtraction for Freely Moving Cameras , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[21]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[22]  Hans-Peter Seidel,et al.  Markerless Motion Capture with unsynchronized moving cameras , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Hujun Bao,et al.  Robust Bilayer Segmentation and Motion/Depth Estimation with a Handheld Camera , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Bodo Rosenhahn,et al.  SlimCuts: GraphCuts for High Resolution Images Using Graph Reduction , 2011, EMMCVPR.

[25]  Andrew W. Fitzgibbon,et al.  Learning spatiotemporal T-junctions for occlusion detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[26]  Jitendra Malik,et al.  Object Segmentation by Long Term Analysis of Point Trajectories , 2010, ECCV.

[27]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.