Generalised soft binomial American real option pricing model (fuzzy-stochastic approach)

The stochastic discrete binomial models and continuous models are usually applied in option valuation. Valuation of the real American options is solved usually by the numerical procedures. Therefore, binomial model is suitable approach for appraising the options of American type. However, there is not in several situations especially in real option methodology application at to disposal input data of required quality. Two aspects of input data uncertainty should be distinguished; risk (stochastic) and vagueness (fuzzy). Traditionally, input data are in a form of real (crisp) numbers or crisp-stochastic distribution function. Therefore, hybrid models, combination of risk and vagueness could be useful approach in option valuation. Generalised hybrid fuzzy-stochastic binomial American real option model under fuzzy numbers (T-numbers) and Decomposition principle is proposed and described. Input data (up index, down index, growth rate, initial underlying asset price, exercise price and risk-free rate) are in a form of fuzzy numbers and result, possibility-expected option value is also determined vaguely as a fuzzy set. Illustrative example of equity valuation as an American real call option is presented.

[1]  Lenos Trigeorgis,et al.  Strategic Investment: Real Options and Games , 2004 .

[2]  Yuji Yoshida,et al.  The valuation of European options in uncertain environment , 2003, Eur. J. Oper. Res..

[3]  Silvia Muzzioli,et al.  A multiperiod binomial model for pricing options in a vague world , 2004 .

[4]  David G. Luenberger Products of trees for investment analysis , 1998 .

[5]  Philip H. Siegel,et al.  Applications of fuzzy sets and the theory of evidence to accounting , 1998 .

[6]  Konstantinos A. Chrysafis,et al.  On theoretical pricing of options with fuzzy estimators , 2009 .

[7]  Volume Number The Value of Flexibility: The Case of a Dual-Fuel Industrial Steam Boiler , 1993 .

[8]  B. Kamrad,et al.  Multinomial Approximating Models for Options with k State Variables , 1991 .

[9]  Nalin Kulatilaka,et al.  The value of flexibility: The case of a dual-fuel industrial steam boiler , 1993 .

[10]  R. Kruse,et al.  Statistics with vague data , 1987 .

[11]  James E. Smith,et al.  Valuing Risky Projects: Option Pricing Theory and Decision Analysis , 1995 .

[12]  Uzay Kaymak,et al.  Value-at-risk estimation by using probabilistic fuzzy systems , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[13]  Wansheng Tang,et al.  Pricing R&D Option with Combining Randomness and Fuzziness , 2006, ICIC.

[14]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[15]  Nguyen Van Hop,et al.  Fuzzy stochastic goal programming problems , 2007, Eur. J. Oper. Res..

[16]  P. Boyle A Lattice Framework for Option Pricing with Two State Variables , 1988, Journal of Financial and Quantitative Analysis.

[17]  P. Boyle,et al.  Numerical Evaluation of Multivariate Contingent Claims , 1989 .

[18]  Gwo-Hshiung Tzeng,et al.  A Fuzzy Set Approach for Generalized CRR Model: An Empirical Analysis of S&P 500 Index Options , 2005 .

[19]  Nikolaos Georgiopoulos Real Options , 2006 .

[20]  Christer Carlsson,et al.  A Fuzzy Approach to Real Option Valuation , 2002, Fuzzy Sets Syst..

[21]  Christer Carlsson,et al.  A Possibilistic Approach to Selecting Portfolios with Highest Utility Score , 2001, Fuzzy Sets Syst..

[22]  Hsien-Chung Wu,et al.  Using fuzzy sets theory and Black-Scholes formula to generate pricing boundaries of European options , 2007, Appl. Math. Comput..

[23]  Peijun Guo,et al.  Portfolio selection based on fuzzy probabilities and possibility distributions , 2000, Fuzzy Sets Syst..

[24]  Sydney Howell,et al.  Real Options: Evaluating Corporate Investment Opportunities in a Dynamic World , 2001 .

[25]  A. Thavaneswaran,et al.  Option valuation model with adaptive fuzzy numbers , 2007, Comput. Math. Appl..

[26]  Umberto Cherubini,et al.  Fuzzy Value-at-risk: Accounting for Market Liquidity , 2001 .

[27]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[28]  Wenli Chen,et al.  The Generalization of lambda-Fuzzy Measures with Application to the Fuzzy Option , 2006, FSKD.

[29]  L. Trigeorgis Real Options: Managerial Flexibility and Strategy in Resource Allocation , 1996 .

[30]  R. Ribeiro Soft computing in financial engineering , 1999 .

[31]  R. McDonald,et al.  The Value of Waiting to Invest , 1982 .

[32]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[33]  María Angeles Gil,et al.  Fuzzy random variables , 2001, Inf. Sci..

[34]  Wang Guangyuan,et al.  Linear programming with fuzzy random variable coefficients , 1993 .

[35]  M. K. Luhandjula Fuzzy stochastic linear programming: Survey and future research directions , 2006, Eur. J. Oper. Res..

[36]  Silvia Muzzioli,et al.  The solution of fuzzy linear systems by non-linear programming: a financial application , 2007, Eur. J. Oper. Res..

[37]  Oluwafemi Fadeyi,et al.  Portfolio selection based on fuzzy probabilities and possibility distributions , 2012 .

[38]  Ching-Lai Hwang,et al.  A stochastic possibilistic programming model for bank hedging decision problems , 1993 .

[39]  Maria Rosaria Simonelli,et al.  Fuzziness in valuing financial instruments by certainty equivalents , 2001, Eur. J. Oper. Res..

[40]  James S. Dyer,et al.  Decision Analysis and Real Options: A Discrete Time Approach to Real Option Valuation , 2005, Ann. Oper. Res..

[41]  Yuji Yoshida,et al.  A discrete-time model of American put option in an uncertain environment , 2003, Eur. J. Oper. Res..

[42]  M. K. Luhandjula Fuzziness and randomness in an optimization framework , 1996, Fuzzy Sets Syst..

[43]  Zdeněk Zmeškal Application of the American Real Flexible Switch Options Methodology A Generalized Approach , 2008 .

[44]  E. Prescott,et al.  Investment Under Uncertainty , 1971 .

[45]  Ehud I. Ronn Real Options and Energy Management , 2002 .

[46]  A. Shapiro,et al.  Fuzzy formulation of the Lee-Carter model for mortality forecasting , 2006 .

[47]  J. Kacprzyk,et al.  Combining Fuzzy Imprecision With Probabilistic Uncertainty in Decision Making , 1988 .

[48]  Ichiro Nishizaki,et al.  An interactive fuzzy satisficing method for multiobjective stochastic linear programming problems through an expectation model , 2003, Eur. J. Oper. Res..

[49]  C. Los OPTION PRICING I , 2000 .

[50]  Zdenek Zmeskal,et al.  Value at risk methodology under soft conditions approach (fuzzy-stochastic approach) , 2005, Eur. J. Oper. Res..

[51]  Masahiro Inuiguchi,et al.  Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem , 2000, Fuzzy Sets Syst..

[52]  Ehud I. Ronn Real Options and Energy Management: Using Options Methodology to Enhance Capital Budgeting Decisions , 2003 .

[53]  Eduardo S. Schwartz,et al.  Evaluating Natural Resource Investments , 1985 .

[54]  Lenos Trigeorgis,et al.  A Log-Transformed Binomial Numerical Analysis Method for Valuing Complex Multi-Option Investments , 1991, Journal of Financial and Quantitative Analysis.

[55]  Hsien-Chung Wu,et al.  European option pricing under fuzzy environments , 2005, Int. J. Intell. Syst..

[56]  Dilip B. Madan,et al.  The multinomial option pricing model and its Brownian and poisson limits , 1989 .

[57]  Luciano Stefanini,et al.  Parametrized Fuzzy Numbers for Option Pricing , 2007, 2007 IEEE International Fuzzy Systems Conference.

[58]  Lotfi A. Zadeh,et al.  Please Scroll down for Article International Journal of General Systems Fuzzy Sets and Systems* Fuzzy Sets and Systems* , 2022 .

[59]  Reinhard Viertl,et al.  Statistical Methods for Non-Precise Data , 1996, International Encyclopedia of Statistical Science.

[60]  Zdenek Zmeskal,et al.  Application of the Fuzzy - Stochastic Methodology to Appraising the Firm Value as a European Call Option , 2001, Eur. J. Oper. Res..

[61]  Masami Yasuda,et al.  A Discrete-Time American Put Option Model with Fuzziness of Stock Prices , 2005, Fuzzy Optim. Decis. Mak..