On Bayesian Inference for Proportional Hazards Models Using Noninformative Priors

In this article, we investigate the propertiesof the posterior distribution under the uniform improper priorfor two commonly used proportional hazards models; the Weibullregression model and the extreme value regression model. We allowthe observations to be right censored. We obtain sufficient conditionsfor the existence of the posterior moment generating functionof the regression coefficients. A dataset involving a lung cancerclinical trial and a simulation are presented to illustrate ourresults.

[1]  Purushottam W. Laud,et al.  On Bayesian Analysis of Generalized Linear Models Using Jeffreys's Prior , 1991 .

[2]  Dipak K. Dey,et al.  Overdispersed Generalized Linear Models , 1997 .

[3]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[4]  J. Lawless Statistical Models and Methods for Lifetime Data , 2002 .

[5]  J. Bernardo Nested Hypothesis Testing: The Bayesian Reference Criterion , 2001 .

[6]  J. F. C. Kingman,et al.  Information and Exponential Families in Statistical Theory , 1980 .

[7]  A. Gelfand,et al.  Identifiability, Improper Priors, and Gibbs Sampling for Generalized Linear Models , 1999 .

[8]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  Nozer D. Singpurwalla,et al.  Non-informative priors do not exist A dialogue with José M. Bernardo , 1997 .

[10]  Dongchu Sun,et al.  Bayesian analysis for a stress‐strength system under noninformative priors , 1998 .

[11]  Dongchu Sun A note on noninformative priors for Weibull distributions , 1997 .

[12]  C. McCulloch,et al.  A Note on the Existence of the Posterior Distribution for a Class of Mixed Models for Binomial Responses , 1995 .

[13]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .

[14]  James O. Berger,et al.  Estimating a Product of Means: Bayesian Analysis with Reference Priors , 1989 .

[15]  W. Gilks,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 1992 .

[16]  James O. Berger,et al.  Reference Priors in a Variance Components Problem , 1992 .

[17]  L. Wasserman,et al.  A Reference Bayesian Test for Nested Hypotheses and its Relationship to the Schwarz Criterion , 1995 .