A normalized basis for quintic Powell-Sabin splines
暂无分享,去创建一个
[1] Paul Sablonnière,et al. Composite finite elements of class Ck , 1985 .
[2] Ming-Jun Lai,et al. On C 2 quintic spline functions over triangulations of Powell-Sabin's type , 1996 .
[3] Hendrik Speleers,et al. Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .
[4] Paul Sablonnière,et al. Composite finite Elements of class C2 , 1987, Topics in Multivariate Approximation.
[5] A. Bultheel,et al. Stable multiresolution analysis on triangles for surface compression , 2006 .
[6] Paul Dierckx,et al. Algorithms for surface fitting using Powell-Sabin splines , 1992 .
[7] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[8] Gerald Farin,et al. Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..
[9] Larry L. Schumaker,et al. Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..
[10] Larry L. Schumaker,et al. Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..
[11] Hong Qin,et al. A C1 Globally Interpolatory Spline of Arbitrary Topology , 2005, VLSM.
[12] Hendrik Speleers,et al. A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..
[13] Hans-Peter Seidel,et al. An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.
[14] Carla Manni,et al. Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..
[15] Hendrik Speleers,et al. Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..
[16] Larry L. Schumaker,et al. Topics in Multivariate Approximation , 1987 .