A normalized basis for quintic Powell-Sabin splines

We construct a suitable normalized B-spline representation for C^2-continuous quintic Powell-Sabin splines. The basis functions have a local support, they are nonnegative, and they form a partition of unity. The construction is based on the determination of a set of triangles that must contain a specific set of points. We are able to define control points and cubic control polynomials which are tangent to the spline surface. We also show how to compute the Bezier control net of such a spline in a stable way.

[1]  Paul Sablonnière,et al.  Composite finite elements of class Ck , 1985 .

[2]  Ming-Jun Lai,et al.  On C 2 quintic spline functions over triangulations of Powell-Sabin's type , 1996 .

[3]  Hendrik Speleers,et al.  Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .

[4]  Paul Sablonnière,et al.  Composite finite Elements of class C2 , 1987, Topics in Multivariate Approximation.

[5]  A. Bultheel,et al.  Stable multiresolution analysis on triangles for surface compression , 2006 .

[6]  Paul Dierckx,et al.  Algorithms for surface fitting using Powell-Sabin splines , 1992 .

[7]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[8]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[9]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..

[10]  Larry L. Schumaker,et al.  Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..

[11]  Hong Qin,et al.  A C1 Globally Interpolatory Spline of Arbitrary Topology , 2005, VLSM.

[12]  Hendrik Speleers,et al.  A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..

[13]  Hans-Peter Seidel,et al.  An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.

[14]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[15]  Hendrik Speleers,et al.  Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..

[16]  Larry L. Schumaker,et al.  Topics in Multivariate Approximation , 1987 .