Direct-Push-Technologien – Effiziente Untersuchungsmethoden für die Untergrunderkundung

ZusammenfassungVor etwa zehn Jahren haben die sogenannten Direct-Push-Technologien in Deutschland als „neue“ Technik für die Erkundung des Untergrundes Einzug gehalten und werden seither vielfach in den verschiedensten Bereichen der Untergrunderkundung eingesetzt. Allerdings werden ihre Anwendungsmöglichkeiten noch zum Teil recht konträr diskutiert und eine gewisse Skepsis ist auch nach mehr als zehn Jahren Erfahrung in Deutschland geblieben. Bei genauerer Betrachtung der Anwendungsfelder dieser Technologie fällt auf, dass die Vielfältigkeit der Technologie zwar in einem zunehmenden Maße genutzt wird, in der „Praxis“ aber noch nicht vollständig angekommen zu sein scheint. Und dies obwohl die Technologie in ihrer einfachsten Art – nämlich in Form von Rammkernsondierungen – standardmäßig eingesetzt, aber das Potenzial der Methode nicht genutzt wird. Um diesem Defizit zu begegnen, zielt dieser Beitrag darauf ab, einen umfassenden Überblick über den Stand der Direct-Push-Technologie und deren vielfältigen Anwendungsmöglichkeiten und -limitierungen zu geben.AbstractAbout ten years ago, Direct Push technologies were introduced in Germany as a “new” tool for subsurface characterization. Ever since, they have been frequently used in various fields of site investigations. However, despite over ten years of experience, their application potential is often perceived with scepticism. Closer consideration of the range of applications of this method shows that the technology is indeed being increasingly used, even though it does not seem to be completely accepted in the “consulting world”. This is surprising as Direct Push is already used in Germany in its simplest form—i.e. by percussion coring—on a routine basis. Nonetheless, the full potential of Direct Push has not yet been exploited. This article aims to provide a comprehensive overview on the state of the art of this technology and its various application potentials and limitations.

[1]  Eslami Abou Alfazl,et al.  CPT AND CPTU DATA FOR SOIL PROFILE INTERPRETATION:REVIEW OF METHODS AND A PROPOSED NEW APPROACH , 2004 .

[2]  Hiroshan Hettiarachchi,et al.  Closure of "Use of SPT Blow Counts to Estimate Shear Strength Properties of Soils: Energy Balance Approach" , 2009 .

[3]  Wenqing Wang,et al.  Development and parameterisation of a complex hydrogeological model based on high-resolution direct-push data , 2007 .

[5]  A. Creese,et al.  A cost comparison , 1977 .

[6]  James J. Butler,et al.  Simulation assessment of the direct‐push permeameter for characterizing vertical variations in hydraulic conductivity , 2008 .

[7]  K. Loos,et al.  Field Determination of Geological/Chemical Properties of an Aquifer by Cone Penetrometry and Headspace Analysis , 1992 .

[8]  Peter Dietrich,et al.  Characterizing Hydraulic Conductivity with the Direct‐Push Permeameter , 2007, Ground water.

[9]  Peter Dietrich,et al.  Direct Push-Technologies , 2006 .

[10]  Thomas Ptak,et al.  Innovative Mess- und Überwachungsmethoden (Grundwassermonitoring) , 2006 .

[11]  K. Cetin,et al.  CPT-Based Probabilistic Soil Characterization and Classification , 2009 .

[12]  Fred J. Molz,et al.  The Impeller Meter for measuring aquifer permeability variations: Evaluation and comparison with other tests , 1989 .

[13]  T. Ptak,et al.  Integral quantification of contaminant mass flow rates in a contaminated aquifer: conditioning of the numerical inversion of concentration-time series. , 2009, Journal of contaminant hydrology.

[14]  J. S. Schweitzer,et al.  Nuclear Techniques for Subsurface Geology , 1987 .

[15]  F. Reinstorf,et al.  Measuring methods for groundwater – surface water interactions: a review , 2006 .

[16]  V. Zlotnik,et al.  Using Direct-push Methods for Aquifer Characterization in Dune-lake Environments of The Nebraska Sand Hills , 2007 .

[17]  Peter K. Robertson,et al.  Cone-penetration testing in geotechnical practice , 1997 .

[18]  Russel W. Edge,et al.  The Hydropunch™: An In Situ Sampling Tool for Collecting Ground Water from Unconsolidated Sediments , 1989 .

[19]  J. Šimůnek,et al.  Estimating Soil Hydraulic Properties From Transient Cone Permeameter Data , 1998 .

[20]  Robert C. Schweitzer,et al.  Demonstration of a method for the direct determination of polycyclic aromatic hydrocarbons in submerged sediments. , 2003, Environmental science & technology.

[21]  T. Griffin,et al.  A Comparison of Field Techniques for Confirming Dense Nonaqueous Phase Liquids , 2002 .

[22]  Poul Løgstrup Bjerg,et al.  A mini slug test method for determination of a local hydraulic conductivity of an unconfined sandy aquifer , 1992 .

[23]  W. Stephenson,et al.  SHEAR-WAVE VELOCITY PROFILE FOR HOLOCENE SEDIMENTS MEASURED FROM MICROTREMOR ARRAY STUDIES, SCPT, AND SEISMIC REFRACTION , 2005 .

[24]  M T Tumay,et al.  Simplification of Soil Classification Charts Derived from the Cone Penetration Test , 1996 .

[25]  S. Lieberman,et al.  Detection of Lead Derived from Automotive Scrap Residue Using a Direct Push Fiber-Optic Laser-Induced Breakdown Spectroscopy Metal Sensor , 2005, Applied spectroscopy.

[26]  P. Aggarwal,et al.  Direct-push profiling of isotopic and hydrochemical vertical gradients. , 2010 .

[27]  P. Robertson Interpretation of cone penetration tests — a unified approach , 2009 .

[28]  R. S. Olsen,et al.  Soil Classification Using Electric Cone Penetrometer , 1981 .

[29]  John A. Cherry,et al.  A New Multilevel Ground Water Monitoring System Using Multichannel Tubing , 2002 .

[30]  William M. Davis,et al.  Rapid delineation of subsurface petroleum contamination using the site characterization and analysis penetrometer system , 1997 .

[31]  R. Borden Effective distribution of emulsified edible oil for enhanced anaerobic bioremediation. , 2007, Journal of contaminant hydrology.

[32]  Peter K. Robertson,et al.  Use of Piezometer Cone Data , 1986 .

[33]  P. Robertson Soil classification using the cone penetration test , 1990 .

[34]  Patrick J. Clark,et al.  Location and Characterization of Subsurface Anomalies Using a Soil Conductivity Probe , 2000 .

[35]  John M Healey,et al.  Hydraulic Tests with Direct‐Push Equipment , 2002, Ground water.

[36]  Moisture assessment with small-scale geophysics - the Interurban project , 2003 .

[37]  Peter Dietrich,et al.  Evaluation of Combined Direct‐Push Methods Used for Aquifer Model Generation , 2009, Ground water.

[38]  P. Braun,et al.  Planung und Durchführung eines Grundwasser-Monitorings mit Direct-Push in Nordbrandenburg , 2010 .

[39]  Wie Flussbett-Temperaturdaten zur Ermittlung der Aquifer-Heterogenität beitragen können , 2008 .

[40]  L Parez,et al.  LE PIEZOCONE - AMELIORATIONS APPORTEES A LA RECONNAISSANCE DES SOLS , 1988 .

[41]  R. Gillham,et al.  A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. , 2004, Journal of contaminant hydrology.

[42]  J. J. Butler,et al.  The Design, Performance, and Analysis of Slug Tests , 1997 .

[43]  A. Keller,et al.  Complex NAPL Site Characterization Using Fluorescence Part 1: Selection of Excitation Wavelength Based on NAPL Composition , 2004 .

[44]  T. Mill,et al.  Free-radical oxidation of organic phosphonic acid salts in water using hydrogen peroxide, oxygen, and ultraviolet light , 1979 .

[45]  Peter Dietrich,et al.  A Rapid Method for Hydraulic Profiling in Unconsolidated Formations , 2008, Ground water.

[46]  R. G. Campanella,et al.  Development and use of an electrical resistivity cone for groundwater contamination studies , 1990 .

[47]  J. David Rogers,et al.  Subsurface Exploration using the Standard Penetration Test and the Cone Penetrometer Test , 2006 .

[48]  Neil Lennart Anderson,et al.  A Comparison of Four Geophysical Methods for Determining the Shear Wave Velocity of Soils , 2007 .

[49]  D. Elsworth,et al.  Permeability Determination from On-the-Fly Piezocone Sounding , 2005 .

[50]  David Nielsen,et al.  Practical handbook of environmental site characterization and ground-water monitoring , 2005 .

[51]  M. Schulmeister,et al.  Direct-push geochemical profiling for assessment of inorganic chemical heterogeneity in aquifers. , 2004, Journal of contaminant hydrology.

[52]  P. Werner,et al.  Leitfaden "Natürliche Schadstoffminderung bei Teerölaltlasten" : Themenverbund 2 "Gaswerke, Kokereien, Teerverarbeitung, (Holz-)Imprägnierung" im BMBF-Förderschwerpunkt "Kontrollierter natürlicher Rückhalt und Abbau von Schadstoffen bei der Sanierung kontaminierter Grundwässer und Böden" (KORA) , 2008 .

[53]  William W. Woessner,et al.  Evaluation of an Inexpensive Small-Diameter Temperature Logger for Documenting Ground Water-River Interactions , 2005 .

[54]  Junboum Park,et al.  Laboratory study on the dielectric properties of contaminated soil using CPT deployed probe , 2007 .

[55]  Waleed Al-Nuaimy,et al.  Detection of Deeply Buried UXO Using CPT Magnetometers , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[56]  Steffen Birk,et al.  Direct‐Push Hydrostratigraphic Profiling: Coupling Electrical Logging and Slug Tests , 2005, Ground water.

[57]  Paul W. Mayne,et al.  Cone Penetration Testing , 2007 .

[58]  S. Jaumé,et al.  Shear Wave Velocity Profiles via Seismic Cone Penetration Test and Refraction Microtremor Techniques at ANSS Strong Motion Sites in Charleston, South Carolina , 2006 .

[60]  Pradeep Kurup,et al.  Electronic Nose — Membrane Interface Probe for Geoenvironmental Site Characterization , 2006 .

[61]  D. DeGroot,et al.  Techniques for sealing cone penetrometer holes , 1995 .

[62]  Peter Dietrich,et al.  Comparison of approaches for the characterization of contamination at rural megasites , 2011 .

[63]  J. Cherry,et al.  Field Demonstrations Using the Waterloo Ground Water Profiler , 1999 .

[64]  Gedeon Dagan,et al.  Spatial characterization of the hydraulic conductivity using direct‐push injection logging , 2010 .

[65]  I. Schechter Laser Induced Plasma Spectroscopy: Α Review of Recent Advances , 1997 .

[66]  Pierre Breul,et al.  In Field Soil Characterization: Approach Based on Texture Image Analysis , 2006 .

[67]  Mehmet T. Tumay,et al.  DEVELOPMENT OF A CONTINUOUS INTRUSION MINIATURE CONE PENETRATION TEST SYSTEM FOR SUBSURFACE EXPLORATIONS , 2001 .

[68]  James J. Butler,et al.  A new method for high‐resolution characterization of hydraulic conductivity , 2009 .

[69]  Giulliana Mondelli,et al.  Geoenvironmental site investigation using different techniques in a municipal solid waste disposal site in Brazil , 2007 .

[70]  Mike Jefferies,et al.  Soil classification by the cone penetration test, Discussion , 1991 .

[71]  Arturo A. Keller,et al.  DNAPL Characterization Methods and Approaches, Part 2: Cost Comparisons , 2002 .

[72]  Tobias Vogt,et al.  Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling , 2010 .

[73]  P A Mosier-Boss,et al.  Field demonstrations of a direct push FO-LIBS metal sensor. , 2002, Environmental science & technology.

[74]  James J. Butler,et al.  Direct‐Push Electrical Conductivity Logging for High‐Resolution Hydrostratigraphic Characterization , 2003 .

[75]  Cheng Cheng,et al.  Electrical and hydraulic vertical variability in channel sediments and its effects on streamflow depletion due to groundwater extraction , 2008 .

[76]  Resat Ulusay,et al.  Liquefaction assessments by field-based methodologies: foundation soils at a dam site in Northeast Turkey , 2007 .

[77]  Brian R. Zurbuchen,et al.  Estimation of hydraulic conductivity from borehole flowmeter tests considering head losses , 2003 .

[78]  Jonathan P. Stewart,et al.  Subsurface Characterization at Ground Failure Sites in Adapazari, Turkey , 2004 .

[79]  David M. Nielsen,et al.  Use of Direct-Push Technologies in Environmental Site Characterization and Ground-Water Monitoring , 2005 .

[80]  Peter K. Robertson,et al.  Seismic cone penetration test for evaluating liquefaction potential under cyclic loading , 1992 .

[81]  Arturo A. Keller,et al.  DNAPL Characterization Methods and Approaches, Part 1: Performance Comparisons , 2001 .

[82]  Dawn A. Zemo,et al.  Cone Penetrometer Testing and Discrete‐Depth Ground Water SamplingL Techniques: A Cost‐Effective Method of Site Characterization in a Multiple‐Aquifer Setting , 1994 .

[83]  Roman D. Hryciw,et al.  Hydraulic Conductivity Measurement from On-the-Fly uCPT Sounding and from VisCPT , 2008 .

[84]  Gayle F Mitchell,et al.  Development of a CPT deployed probe for in situ measurement of volumetric soil moisture content and electrical resistivity , 1998 .

[85]  Virgil A. Baker,et al.  Field Comparison of Analytical Results from Discrete‐Depth Ground Water Samplers , 1995 .

[86]  Hendrik Paasche,et al.  Near-surface seismic traveltime tomography using a direct-push source and surface-planted geophones , 2009 .

[87]  Jason T. DeJong,et al.  EFFECT OF SURFACE TEXTURING ON CPT FRICTION SLEEVE MEASUREMENTS , 2001 .

[88]  Xunhong Chen,et al.  Hydrologic connections of a stream–aquifer-vegetation zone in south-central Platte River valley, Nebraska , 2007 .

[89]  Samuel Diem,et al.  Räumliche Charakterisierung der hydraulischen Leitfähigkeit in alluvialen Schotter-Grundwasserleitern: Ein Methodenvergleich , 2010 .

[90]  P. K. Robertson,et al.  Soil classification using the cone penetration test: Reply , 1991 .

[91]  N. Akça,et al.  Correlation of SPT–CPT data from the United Arab Emirates , 2003 .

[92]  Wesley McCall,et al.  Application of Direct Push Methods to Investigate Uranium Distribution in an Alluvial Aquifer , 2009 .

[93]  M. Charette,et al.  Precision Ground Water Sampling in Coastal Aquifers Using a Direct‐Push, Shielded‐Screen Well‐Point System , 2006 .

[95]  P. Grathwohl,et al.  Bestimmung der Schadstofffrachten an Kontrollebenen mithilfe von Punktkonzentrationsmessungen und Immissionspumpversuchen – ein Vergleich , 2008 .

[96]  G. Vanermen,et al.  Application of the membrane interphase probe (MIP): an evaluation , 2009 .

[97]  Derek Elsworth,et al.  Limits in determining permeability from on-the-fly uCPT sounding , 2007 .

[98]  B. Engeser,et al.  Integrierter Einsatz von Scherwellenseismik und Direct-Push-Verfahren zur Erkundung eines urbanen Grundwasserleiters , 2008 .

[99]  Brian R. Zurbuchen,et al.  Field study of hydraulic conductivity in a heterogeneous aquifer: Comparison of single‐borehole measurements using different instruments , 2003 .

[100]  Roman D. Hryciw,et al.  VISION CONE PENETROMETER FOR DIRECT SUBSURFACE SOIL OBSERVATION. TECHNICAL NOTE , 1997 .

[101]  G. G. Goble,et al.  SPT Dynamic Analysis and Measurements , 1997 .

[102]  M. Barcelona,et al.  Field Study of Enhanced TCE Reductive Dechlorination by a Full‐Scale Whey PRB , 2011 .

[103]  Pradeep Kurup,et al.  Novel technologies for sniffing soil and ground water contaminants , 2009 .

[104]  P. Blum,et al.  Field scale characterization and modeling of contaminant release from a coal tar source zone. , 2008, Journal of contaminant hydrology.

[105]  Rick Grehan Performance comparisons , 1993 .

[106]  Nader Nariman-zadeh,et al.  Piles shaft capacity from CPT and CPTu data by polynomial neural networks and genetic algorithms , 2009 .

[107]  J. Furey,et al.  Rapid detection of volatile organic compounds in groundwater by in situ purge and direct-sampling ion-trap mass spectrometry , 1998 .

[108]  John T. Wilson,et al.  Measuring vertical profiles of hydraulic conductivity with in situ direct-push methods , 2000 .

[109]  Michael G. Waddell,et al.  Geophysics and Shallow Faults in Unconsolidated Sediments , 1996 .

[110]  Tomographic imaging of permafrost using three-component seismic cone-penetration test , 2006 .