Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation

[1]  M. Skobe,et al.  Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. , 2007, The Journal of clinical investigation.

[2]  R. Adams,et al.  Regulation of vascular morphogenesis by Notch signaling. , 2007, Genes & development.

[3]  M. Shibuya,et al.  Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting , 2007, The Journal of experimental medicine.

[4]  D. Hicklin,et al.  Cooperative and redundant roles of VEGFR‐2 and VEGFR‐3 signaling in adult lymphangiogenesis , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[5]  G. Thurston,et al.  Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting , 2007, Proceedings of the National Academy of Sciences.

[6]  Antonio Duarte,et al.  The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching , 2007, Proceedings of the National Academy of Sciences.

[7]  Nathan D. Lawson,et al.  Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries , 2007, Nature.

[8]  Holger Gerhardt,et al.  Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis , 2007, Nature.

[9]  K. Alitalo,et al.  Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. , 2007, Cancer research.

[10]  Minhong Yan,et al.  Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis , 2006, Nature.

[11]  MasabumiShibuya,et al.  Chimeric VEGF-ENZ7/PlGF Promotes Angiogenesis Via VEGFR-2 Without Significant Enhancement of Vascular Permeability and Inflammation , 2006 .

[12]  T. Veikkola,et al.  Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. , 2006, The American journal of pathology.

[13]  B. Weinstein,et al.  Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[14]  K. Alitalo,et al.  Lymphangiogenesis and cancer metastasis. , 2006 .

[15]  Gavin Thurston,et al.  Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. , 2006, Nature.

[16]  Napoleone Ferrara,et al.  Angiogenesis as a therapeutic target , 2005, Nature.

[17]  Peter Carmeliet,et al.  Angiogenesis in life, disease and medicine , 2005, Nature.

[18]  Tatiana V. Petrova,et al.  Lymphangiogenesis in development and human disease , 2005, Nature.

[19]  K. Alitalo,et al.  Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. , 2005, Blood.

[20]  Seppo Ylä-Herttuala,et al.  Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. , 2005, The Journal of clinical investigation.

[21]  M. Skobe,et al.  Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. , 2005, Journal of the National Cancer Institute.

[22]  Janet Rossant,et al.  Dosage-sensitive requirement for mouse Dll4 in artery development. , 2004, Genes & development.

[23]  J. Partanen,et al.  Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins , 2004, Nature Immunology.

[24]  H. Augustin,et al.  Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[25]  Lena Claesson-Welsh,et al.  Ligand-induced Vascular Endothelial Growth Factor Receptor-3 (VEGFR-3) Heterodimerization with VEGFR-2 in Primary Lymphatic Endothelial Cells Regulates Tyrosine Phosphorylation Sites* , 2003, Journal of Biological Chemistry.

[26]  K. Alitalo,et al.  VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia , 2003, The Journal of cell biology.

[27]  N. Ferrara,et al.  The biology of VEGF and its receptors , 2003, Nature Medicine.

[28]  M. Shibuya,et al.  VEGFR-2-specific ligand VEGF-E induces non-edematous hyper-vascularization in mice. , 2003, Biochemical and biophysical research communications.

[29]  L. Miele,et al.  The Notch Ligand Jagged-1 Is Able to Induce Maturation of Monocyte-Derived Human Dendritic Cells1 , 2002, The Journal of Immunology.

[30]  T. Veikkola,et al.  Lymphangiogenic Gene Therapy With Minimal Blood Vascular Side Effects , 2002, The Journal of experimental medicine.

[31]  K. Alitalo,et al.  Metastasis: Lymphangiogenesis and cancer metastasis , 2002, Nature Reviews Cancer.

[32]  D. Kerjaschki,et al.  Isolation and Characterization of Dermal Lymphatic and Blood Endothelial Cells Reveal Stable and Functionally Specialized Cell Lineages , 2001, The Journal of experimental medicine.

[33]  M. Karkkainen,et al.  The Specificity of Receptor Binding by Vascular Endothelial Growth Factor-D Is Different in Mouse and Man* , 2001, The Journal of Biological Chemistry.

[34]  K. Alitalo,et al.  Adenoviral Expression of Vascular Endothelial Growth Factor-C Induces Lymphangiogenesis in the Skin , 2001, Circulation research.

[35]  M. Karkkainen,et al.  Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. , 2001, Cancer research.

[36]  N. Ferrara,et al.  Analysis of Biological Effects and Signaling Properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2) , 2001, The Journal of Biological Chemistry.

[37]  Seppo Ylä-Herttuala,et al.  Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3 , 2001, Nature Medicine.

[38]  F. D. Miller,et al.  Functional gamma‐secretase inhibitors reduce beta‐amyloid peptide levels in brain , 2000, Journal of neurochemistry.

[39]  K. Alitalo,et al.  Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. , 2000, The American journal of pathology.

[40]  T. Tsukamoto,et al.  Establishment and characterization of a human lung cancer cell line NCI-H460-LNM35 with consistent lymphogenous metastasis via both subcutaneous and orthotopic propagation. , 2000, Cancer research.

[41]  D. Hicklin,et al.  Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. , 1999, Cancer research.

[42]  K. Alitalo,et al.  VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. , 1999, American Journal of Pathology.

[43]  G. Christofori,et al.  Neural Cell Adhesion Molecule (N-CAM) Is Required for Cell Type Segregation and Normal Ultrastructure in Pancreatic Islets , 1999, The Journal of cell biology.

[44]  K. Alitalo,et al.  Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. , 1998, Science.

[45]  E. Tschachler,et al.  Lymphatic endothelium and Kaposi's sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. , 1998, Cancer research.

[46]  Lieve Moons,et al.  Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele , 1996, Nature.

[47]  Kenneth J. Hillan,et al.  Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene , 1996, Nature.

[48]  Janet Rossant,et al.  Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice , 1995, Nature.

[49]  K. Alitalo,et al.  Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[50]  H. Inoko,et al.  Expression and function of class II antigens on gastric carcinoma cells and gastric epithelia: differential expression of DR, DQ, and DP antigens. , 1987, Journal of the National Cancer Institute.

[51]  D. Hanahan,et al.  Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. , 1985, Nature.