Synaptic counts approximate synaptic contact area in Drosophila

The pattern of synaptic connections among neurons defines the circuit structure, which constrains the computations that a circuit can perform. The strength of synaptic connections is costly to measure yet important for accurate circuit modeling. It has been shown that synaptic surface area correlates with synaptic strength, yet in the emerging field of connectomics, most studies rely instead on the counts of synaptic contacts between two neurons. Here we quantified the relationship between synaptic count and synaptic area as measured from volume electron microscopy of the larval Drosophila central nervous system. We found that the total synaptic surface area, summed across all synaptic contacts from one presynaptic neuron to a postsynaptic one, can be accurately predicted solely from the number of synaptic contacts, for a variety of neurotransmitters. Our findings support the use of synaptic counts for approximating synaptic strength when modeling neural circuits.

[1]  Casey M. Schneider-Mizell,et al.  Conserved neural circuit structure across Drosophila larval development revealed by comparative connectomics , 2017, bioRxiv.

[2]  Kevan A. C. Martin,et al.  Structure and function of a neocortical synapse , 2019, Nature.

[3]  S. Romani,et al.  The computation of directional selectivity in the Drosophila OFF motion pathway , 2019, eLife.

[4]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.

[5]  Fred L. Drake,et al.  Python 3 Reference Manual , 2009 .

[6]  Roy Fielding,et al.  Architectural Styles and the Design of Network-based Software Architectures"; Doctoral dissertation , 2000 .

[7]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[8]  I. Meinertzhagen,et al.  Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.

[9]  B. Katz,et al.  Quantal components of the end‐plate potential , 1954, The Journal of physiology.

[10]  S. Palay,et al.  The morphology of synapses , 1996, Journal of neurocytology.

[11]  Michael B. Reiser,et al.  The computation of directional selectivity in the Drosophila OFF motion pathway , 2019, bioRxiv.

[12]  K. Hayworth,et al.  Enhanced FIB-SEM systems for large-volume 3D imaging , 2017, eLife.

[13]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[14]  Matthias Landgraf,et al.  Even-Skipped+ Interneurons Are Core Components of a Sensorimotor Circuit that Maintains Left-Right Symmetric Muscle Contraction Amplitude , 2015, Neuron.

[15]  Aravinthan D. T. Samuel,et al.  The wiring diagram of a glomerular olfactory system , 2016, bioRxiv.

[16]  Matthias Landgraf,et al.  Dendritic growth gated by a steroid hormone receptor underlies increases in activity in the developing Drosophila locomotor system , 2013, Proceedings of the National Academy of Sciences.

[17]  E. Rolls Diluted connectivity in pattern association networks facilitates the recall of information from the hippocampus to the neocortex. , 2015, Progress in brain research.

[18]  Feng Li,et al.  The complete connectome of a learning and memory centre in an insect brain , 2017, Nature.

[19]  Randall D. Beer,et al.  Connecting a Connectome to Behavior: An Ensemble of Neuroanatomical Models of C. elegans Klinotaxis , 2013, PLoS Comput. Biol..

[20]  A. Cardona,et al.  Elastic volume reconstruction from series of ultra-thin microscopy sections , 2012, Nature Methods.

[21]  Michael B. Reiser,et al.  A Connectome Based Hexagonal Lattice Convolutional Network Model of the Drosophila Visual System , 2018, ArXiv.

[22]  J. Huxley Problems of relative growth , 1932 .

[23]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[24]  J. Littleton,et al.  Characterization of developmental and molecular factors underlying release heterogeneity at Drosophila synapses , 2018, eLife.

[25]  Floris van Breugel,et al.  FigureFirst: A Layout-first Approach for Scientific Figures , 2017 .

[26]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[27]  Stephan Saalfeld,et al.  CATMAID: collaborative annotation toolkit for massive amounts of image data , 2009, Bioinform..

[28]  T. Branco,et al.  Examining size–strength relationships at hippocampal synapses using an ultrastructural measurement of synaptic release probability , 2010, Journal of structural biology.

[29]  Nils Otto,et al.  The Ol1mpiad: concordance of behavioural faculties of stage 1 and stage 3 Drosophila larvae , 2017, Journal of Experimental Biology.

[30]  William F Tobin,et al.  Wiring variations that enable and constrain neural computation in a sensory microcircuit , 2017, bioRxiv.

[31]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[32]  Casey M. Schneider-Mizell,et al.  Quantitative neuroanatomy for connectomics in Drosophila , 2015, bioRxiv.

[33]  Kaori Ikeda,et al.  Counting the number of releasable synaptic vesicles in a presynaptic terminal , 2009, Proceedings of the National Academy of Sciences.

[34]  K. Scheckel,et al.  Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material , 2017, Neuron.

[35]  Gerald M. Rubin,et al.  Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution , 2019, Science.

[36]  Wei-Chung Allen Lee,et al.  Automatic Detection of Synaptic Partners in a Whole-Brain Drosophila EM Dataset , 2019, bioRxiv.

[37]  Matthias Landgraf,et al.  Development of Connectivity in a Motoneuronal Network in Drosophila Larvae , 2015, Current Biology.

[38]  Rachel I. Wilson,et al.  Understanding the functional consequences of synaptic specialization: insight from the Drosophila antennal lobe , 2011, Current Opinion in Neurobiology.

[39]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .

[40]  Louis K. Scheffer,et al.  Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain. , 2011, Current biology : CB.

[41]  Tobias Pietzsch,et al.  BigDataViewer: visualization and processing for large image data sets , 2015, Nature Methods.

[42]  T. Schikorski,et al.  Morphological correlates of functionally defined synaptic vesicle populations , 2001, Nature Neuroscience.

[43]  Srinivas C. Turaga,et al.  Constraining computational models using electron microscopy wiring diagrams , 2019, Current Opinion in Neurobiology.

[44]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[45]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[46]  Pedro M. Valero-Mora,et al.  ggplot2: Elegant Graphics for Data Analysis , 2010 .

[47]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[48]  Ching Y. Suen,et al.  A fast parallel algorithm for thinning digital patterns , 1984, CACM.

[49]  Kristin Branson,et al.  A multilevel multimodal circuit enhances action selection in Drosophila , 2015, Nature.

[50]  Matthias Landgraf,et al.  Structural Homeostasis: Compensatory Adjustments of Dendritic Arbor Geometry in Response to Variations of Synaptic Input , 2008, PLoS biology.

[51]  Marc Gershow,et al.  Circuits for integrating learnt and innate valences in the fly brain , 2020, bioRxiv.

[52]  Casey M. Schneider-Mizell,et al.  Competitive Disinhibition Mediates Behavioral Choice and Sequences in Drosophila , 2016, Cell.