CONTRIBUTIONS TO MATHEMATICAL STATISTICS
暂无分享,去创建一个
[1] R. R. Bahadur. On a Problem in the Theory of k Populations , 1950 .
[2] M. M. Siddiqui,et al. Robust Estimation of Location , 1967 .
[3] Douglas M. Hawkins. Identification of Outliers , 1980, Monographs on Applied Probability and Statistics.
[4] I. J. Hall,et al. On Slippage Tests--(II) Similar Slippage Tests , 1968 .
[5] Y. S. Sathe,et al. A k-sample slippage test for location parameter , 1981 .
[6] Akio Kudô,et al. On the invariant multiple decision procedures , 1956 .
[7] Johann Pfanzagl,et al. Ein kombiniertes test & klassifikations-problem , 1959 .
[8] P. D. T. A. Elliott. Probabilistic Number Theory II: Central Limit Theorems , 1980 .
[9] R. Doornbos,et al. On slippage tests , 1958 .
[10] Rupert G. Miller. Simultaneous Statistical Inference , 1966 .
[11] Kimura Miyoshi. The Asymptotic Efficiency Of Conditional Slippage Tests For Exponential Families , 1984 .
[12] R. Doornbos,et al. Slippage tests for a set of gamma-variates : (proceedings knaw series a, _5_9(1956), nr 3, indagationes mathematicae, _1_8(1956), p 329-337) , 1956 .
[13] D. R. Traux,et al. An Optimum Slippage Test for the Variances of $k$ Normal Distributions , 1953 .
[14] R. Doornbos,et al. On slippage tests. III. Two distributionfree slippage tests and two tables , 1958 .
[15] D. Freedman,et al. Invariant Probabilities for Certain Markov Processes , 1966 .
[16] P. Elliott. Probabilistic number theory , 1979 .
[17] Lai K. Chan,et al. On the optimum best linear unbiased estimates of the parameters of the normal distribution based on selected order statistics , 1973 .
[18] David H. Young,et al. Distribution free slippage tests for populations following a lehmann model , 1979 .
[19] R. A. Sack,et al. Optimal Solutions in Parameter Estimation Problems for the Cauchy Distribution , 1974 .
[20] Itsuro Kakiuchi,et al. ON SLIPPAGE RANK TESTS-(I) : THE DERIVATION OF OPTIMAL PROCEDURES , 1975 .
[21] Persi Diaconis,et al. Average Running Time of the Fast Fourier Transform , 1980, J. Algorithms.
[22] R. R. Hall. Squarefree numbers on short intervals , 1982 .
[23] Irwin Guttman,et al. A Bayesian Approach to Some Best Population Problems , 1964 .
[24] C. L. Hull,et al. A Behavior System , 1954 .
[25] V. J. Bofinger. THE k‐SAMPLE SLIPPAGE PROBLEM1 , 1965 .
[26] J. Gastwirth. ON ROBUST PROCEDURES , 1966 .
[27] W. J. Conover,et al. Two k-Sample Slippage Tests , 1968 .
[28] H. A. David,et al. Order Statistics (2nd ed). , 1981 .
[29] B. M. Brown,et al. Symmetric quantile averages and related estimators , 1981 .
[30] A. Garsia. Arithmetic properties of Bernoulli convolutions , 1962 .
[31] Vic Barnett,et al. Outliers in Statistical Data , 1980 .
[32] W. J. Dixon. Estimates of the Mean and Standard Deviation of a Normal Population , 1957 .
[33] E. Paulson,et al. An Optimum Solution to the $k$-Sample Slippage Problem for the Normal Distribution , 1952 .
[34] R. Butler. The Admissible Bayes Character of Subset Selection Techniques Involved in Variable Selection, Outlier Detection, and Slippage Problems , 1981 .
[35] P. N. Somerville. Some problems of optimum sampling , 1954 .
[36] Raymond J. Bandlow. Theories of Learning, 4th Edition. By Ernest R. Hilgard and Gordon H. Bower. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1975 , 1976 .
[37] H. Thiele,et al. Doornbos, R.: Slippage Tests. Mathematical Centre Tracts 15 des Stichting Mathematisch Centrum Amsterdam (O). 1966. 97 S., Preis $ 3,‐ , 1968 .
[38] Thomas S. Ferguson,et al. Who Solved the Secretary Problem , 1989 .
[39] S. Gupta. On Some Multiple Decision (Selection and Ranking) Rules , 1965 .
[40] M. Barnsley,et al. Solution of an inverse problem for fractals and other sets. , 1986, Proceedings of the National Academy of Sciences of the United States of America.
[41] Thomas S. Ferguson,et al. On the Rejection of Outliers , 1961 .
[42] F. Benson,et al. A Note on the Estimation of Mean and Standard Deviation from Quantiles , 1949 .
[43] Muni S. Srivastava,et al. The Performance of a Sequential Procedure for a Slippage Problem , 1973 .
[44] Thomas Kaijser. A limit theorem for Markov chains in compact metric spaces with applications to products of random matrices , 1978 .
[45] C. Roberts,et al. An Asymptotically Optimal Fixed Sample Size Procedure for Comparing Several Experimental Categories with a Control , 1964 .
[46] S. Lakshmivarahan,et al. Learning Algorithms Theory and Applications , 1981 .
[47] R. Bechhofer. A Single-Sample Multiple Decision Procedure for Ranking Means of Normal Populations with known Variances , 1954 .
[48] J. H. Cadwell. The Distribution of Quasi-Ranges in Samples From a Normal Population , 1953 .
[49] C. G. Khatri,et al. On a Decision Procedure Based on the Tukey Statistic , 1957 .
[50] E. Paulson. On the Comparison of Several Experimental Categories with a Control , 1952 .
[51] R. Doornbos,et al. On Slippage Tests. I , 1960 .
[52] S. Karlin. Some random walks arising in learning models. I. , 1953 .
[53] Paul N. Somerville,et al. Optimum Sample Size for a Problem in Choosing the Population with the Largest Mean , 1970 .
[54] C. Roberts,et al. An Asymptotically Optimal Sequential Design for Comparing Several Experimental Categories with a Control , 1963 .
[55] George A. Miller,et al. Mathematics and psychology , 1966 .
[56] Harley Bornbach,et al. An introduction to mathematical learning theory , 1967 .
[57] Patrick Billingsley,et al. The Probability Theory of Additive Arithmetic Functions , 1974 .
[58] M. Kac. Statistical Independence in Probability Analysis and Number Theory , 1959 .
[59] Dieter Kalin,et al. Mathematical Learning Models — Theory and Algorithms , 1983 .
[60] Don C Hutcherson,et al. Statistical properties of quasi-range in small samples from a gamma density , 1982 .
[61] D. Bloch,et al. A Note on the Estimation of the Location Parameter of the Cauchy Distribution , 1966 .
[62] P. Bougerol,et al. Products of Random Matrices with Applications to Schrödinger Operators , 1985 .
[63] L. L. Thurstone,et al. The learning curve equation , 1919 .
[64] E. Hilgard,et al. Theories of Learning , 1981 .
[65] M. J. R. Healy,et al. Economic Choice of the Amount of Experimentation , 1956 .
[66] Satya D. Dubey,et al. Some Percentile Estimators for Weibull Parameters , 1967 .
[67] A. E. Sarhan,et al. Contributions to order statistics , 1964 .
[68] Junjiro Ogawa,et al. Contributions to the theory of systematic statistics. II. Large sample theoretical treatments of some problems arising from dosage and time mortality curve , 1951 .
[69] Lennart S. Rhodin,et al. Robust Estimation of Location Using Optimally Chosen Sample Quantiles , 1980 .
[70] R. L. Eubank,et al. Estimation of the parameters and quantiles of the logistic distribution by linear functions of sample quantiles , 1981 .
[71] Z. Govindarajulu. On Moments of Order Statistics and Quasi-ranges from Normal Populations , 1963 .
[72] I. J. Hall,et al. On Slippage Tests-$(I)^1$ A Generalization of Neyman-Pearson's Lemma , 1968 .
[73] Takashi Yanagawa,et al. ON SLIPPAGE RANK TESTS-(II) : ASYMPTOTIC RELATIVE EFFICIENCIES , 1977 .
[74] C. Dunnett. On Selecting the Largest of k Normal Population Means , 1960 .
[75] H. Leon Harter. The Use of Sample Quasi-Ranges in Estimating Population Standard Deviation , 1959 .
[76] P. Gallagher,et al. On the distribution of primes in short intervals , 1976 .
[77] Laurie Hodges,et al. Construction of fractal objects with iterated function systems , 1985, SIGGRAPH.
[78] Henry R. Neave. A Quick and Simple Technique for General Slippage Problems , 1975 .
[79] A. Tversky,et al. Judgment under Uncertainty: Heuristics and Biases , 1974, Science.
[80] Shanti S. Gupta,et al. Multiple Statistical Decision Theory: Recent Developments , 1981 .
[81] E. Paulson,et al. A Sequential Procedure for Comparing Several Experimental Categories with a Standard or Control , 1962 .
[82] D. F. Andrews,et al. Robust Estimates of Location , 1972 .