CONTRIBUTIONS TO MATHEMATICAL STATISTICS

At Harvard professors get to choose their titles. Bill Cochran was Professor of Statistics; Art Dempster is Professor of Theoretical Statistics. Since the start of Harvard’s department, Frederick Mosteller has been Professor of Mathematical Statistics.

[1]  R. R. Bahadur On a Problem in the Theory of k Populations , 1950 .

[2]  M. M. Siddiqui,et al.  Robust Estimation of Location , 1967 .

[3]  Douglas M. Hawkins Identification of Outliers , 1980, Monographs on Applied Probability and Statistics.

[4]  I. J. Hall,et al.  On Slippage Tests--(II) Similar Slippage Tests , 1968 .

[5]  Y. S. Sathe,et al.  A k-sample slippage test for location parameter , 1981 .

[6]  Akio Kudô,et al.  On the invariant multiple decision procedures , 1956 .

[7]  Johann Pfanzagl,et al.  Ein kombiniertes test & klassifikations-problem , 1959 .

[8]  P. D. T. A. Elliott Probabilistic Number Theory II: Central Limit Theorems , 1980 .

[9]  R. Doornbos,et al.  On slippage tests , 1958 .

[10]  Rupert G. Miller Simultaneous Statistical Inference , 1966 .

[11]  Kimura Miyoshi The Asymptotic Efficiency Of Conditional Slippage Tests For Exponential Families , 1984 .

[12]  R. Doornbos,et al.  Slippage tests for a set of gamma-variates : (proceedings knaw series a, _5_9(1956), nr 3, indagationes mathematicae, _1_8(1956), p 329-337) , 1956 .

[13]  D. R. Traux,et al.  An Optimum Slippage Test for the Variances of $k$ Normal Distributions , 1953 .

[14]  R. Doornbos,et al.  On slippage tests. III. Two distributionfree slippage tests and two tables , 1958 .

[15]  D. Freedman,et al.  Invariant Probabilities for Certain Markov Processes , 1966 .

[16]  P. Elliott Probabilistic number theory , 1979 .

[17]  Lai K. Chan,et al.  On the optimum best linear unbiased estimates of the parameters of the normal distribution based on selected order statistics , 1973 .

[18]  David H. Young,et al.  Distribution free slippage tests for populations following a lehmann model , 1979 .

[19]  R. A. Sack,et al.  Optimal Solutions in Parameter Estimation Problems for the Cauchy Distribution , 1974 .

[20]  Itsuro Kakiuchi,et al.  ON SLIPPAGE RANK TESTS-(I) : THE DERIVATION OF OPTIMAL PROCEDURES , 1975 .

[21]  Persi Diaconis,et al.  Average Running Time of the Fast Fourier Transform , 1980, J. Algorithms.

[22]  R. R. Hall Squarefree numbers on short intervals , 1982 .

[23]  Irwin Guttman,et al.  A Bayesian Approach to Some Best Population Problems , 1964 .

[24]  C. L. Hull,et al.  A Behavior System , 1954 .

[25]  V. J. Bofinger THE k‐SAMPLE SLIPPAGE PROBLEM1 , 1965 .

[26]  J. Gastwirth ON ROBUST PROCEDURES , 1966 .

[27]  W. J. Conover,et al.  Two k-Sample Slippage Tests , 1968 .

[28]  H. A. David,et al.  Order Statistics (2nd ed). , 1981 .

[29]  B. M. Brown,et al.  Symmetric quantile averages and related estimators , 1981 .

[30]  A. Garsia Arithmetic properties of Bernoulli convolutions , 1962 .

[31]  Vic Barnett,et al.  Outliers in Statistical Data , 1980 .

[32]  W. J. Dixon Estimates of the Mean and Standard Deviation of a Normal Population , 1957 .

[33]  E. Paulson,et al.  An Optimum Solution to the $k$-Sample Slippage Problem for the Normal Distribution , 1952 .

[34]  R. Butler The Admissible Bayes Character of Subset Selection Techniques Involved in Variable Selection, Outlier Detection, and Slippage Problems , 1981 .

[35]  P. N. Somerville Some problems of optimum sampling , 1954 .

[36]  Raymond J. Bandlow Theories of Learning, 4th Edition. By Ernest R. Hilgard and Gordon H. Bower. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1975 , 1976 .

[37]  H. Thiele,et al.  Doornbos, R.: Slippage Tests. Mathematical Centre Tracts 15 des Stichting Mathematisch Centrum Amsterdam (O). 1966. 97 S., Preis $ 3,‐ , 1968 .

[38]  Thomas S. Ferguson,et al.  Who Solved the Secretary Problem , 1989 .

[39]  S. Gupta On Some Multiple Decision (Selection and Ranking) Rules , 1965 .

[40]  M. Barnsley,et al.  Solution of an inverse problem for fractals and other sets. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Thomas S. Ferguson,et al.  On the Rejection of Outliers , 1961 .

[42]  F. Benson,et al.  A Note on the Estimation of Mean and Standard Deviation from Quantiles , 1949 .

[43]  Muni S. Srivastava,et al.  The Performance of a Sequential Procedure for a Slippage Problem , 1973 .

[44]  Thomas Kaijser A limit theorem for Markov chains in compact metric spaces with applications to products of random matrices , 1978 .

[45]  C. Roberts,et al.  An Asymptotically Optimal Fixed Sample Size Procedure for Comparing Several Experimental Categories with a Control , 1964 .

[46]  S. Lakshmivarahan,et al.  Learning Algorithms Theory and Applications , 1981 .

[47]  R. Bechhofer A Single-Sample Multiple Decision Procedure for Ranking Means of Normal Populations with known Variances , 1954 .

[48]  J. H. Cadwell The Distribution of Quasi-Ranges in Samples From a Normal Population , 1953 .

[49]  C. G. Khatri,et al.  On a Decision Procedure Based on the Tukey Statistic , 1957 .

[50]  E. Paulson On the Comparison of Several Experimental Categories with a Control , 1952 .

[51]  R. Doornbos,et al.  On Slippage Tests. I , 1960 .

[52]  S. Karlin Some random walks arising in learning models. I. , 1953 .

[53]  Paul N. Somerville,et al.  Optimum Sample Size for a Problem in Choosing the Population with the Largest Mean , 1970 .

[54]  C. Roberts,et al.  An Asymptotically Optimal Sequential Design for Comparing Several Experimental Categories with a Control , 1963 .

[55]  George A. Miller,et al.  Mathematics and psychology , 1966 .

[56]  Harley Bornbach,et al.  An introduction to mathematical learning theory , 1967 .

[57]  Patrick Billingsley,et al.  The Probability Theory of Additive Arithmetic Functions , 1974 .

[58]  M. Kac Statistical Independence in Probability Analysis and Number Theory , 1959 .

[59]  Dieter Kalin,et al.  Mathematical Learning Models — Theory and Algorithms , 1983 .

[60]  Don C Hutcherson,et al.  Statistical properties of quasi-range in small samples from a gamma density , 1982 .

[61]  D. Bloch,et al.  A Note on the Estimation of the Location Parameter of the Cauchy Distribution , 1966 .

[62]  P. Bougerol,et al.  Products of Random Matrices with Applications to Schrödinger Operators , 1985 .

[63]  L. L. Thurstone,et al.  The learning curve equation , 1919 .

[64]  E. Hilgard,et al.  Theories of Learning , 1981 .

[65]  M. J. R. Healy,et al.  Economic Choice of the Amount of Experimentation , 1956 .

[66]  Satya D. Dubey,et al.  Some Percentile Estimators for Weibull Parameters , 1967 .

[67]  A. E. Sarhan,et al.  Contributions to order statistics , 1964 .

[68]  Junjiro Ogawa,et al.  Contributions to the theory of systematic statistics. II. Large sample theoretical treatments of some problems arising from dosage and time mortality curve , 1951 .

[69]  Lennart S. Rhodin,et al.  Robust Estimation of Location Using Optimally Chosen Sample Quantiles , 1980 .

[70]  R. L. Eubank,et al.  Estimation of the parameters and quantiles of the logistic distribution by linear functions of sample quantiles , 1981 .

[71]  Z. Govindarajulu On Moments of Order Statistics and Quasi-ranges from Normal Populations , 1963 .

[72]  I. J. Hall,et al.  On Slippage Tests-$(I)^1$ A Generalization of Neyman-Pearson's Lemma , 1968 .

[73]  Takashi Yanagawa,et al.  ON SLIPPAGE RANK TESTS-(II) : ASYMPTOTIC RELATIVE EFFICIENCIES , 1977 .

[74]  C. Dunnett On Selecting the Largest of k Normal Population Means , 1960 .

[75]  H. Leon Harter The Use of Sample Quasi-Ranges in Estimating Population Standard Deviation , 1959 .

[76]  P. Gallagher,et al.  On the distribution of primes in short intervals , 1976 .

[77]  Laurie Hodges,et al.  Construction of fractal objects with iterated function systems , 1985, SIGGRAPH.

[78]  Henry R. Neave A Quick and Simple Technique for General Slippage Problems , 1975 .

[79]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[80]  Shanti S. Gupta,et al.  Multiple Statistical Decision Theory: Recent Developments , 1981 .

[81]  E. Paulson,et al.  A Sequential Procedure for Comparing Several Experimental Categories with a Standard or Control , 1962 .

[82]  D. F. Andrews,et al.  Robust Estimates of Location , 1972 .