Primary Decomposition: Algorithms and Comparisons

The Hilbert series and degree bounds play significant roles in computational invariant theory. In the modular case, neither of these tools is avrulable in general. In this article three results are obtruned, which provide partial remedies for these shortcomings. First, it is shown that the so-called extended Hilbert series, which can always be calculated by a MoHen type formula, yields strong constraints on the degrees of primary invariants. Then it is shown that for a trivial source module the (ordinary) Hilbert series coincides with that of a lift to characteristic 0 and can hence be calculated by MoHen’s formula. The last result is a generalization of Goobel’s degree bound to the case of monomial representations.

[1]  B. Sturmfels,et al.  Binomial Ideals , 1994, alg-geom/9401001.

[2]  Teresa Krick,et al.  An Algorithm for the Computation of the Radical of an Ideal in the Ring of Polynomials , 1991, AAECC.

[3]  Bud Mishra,et al.  Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.

[4]  Gregor Kemper,et al.  Some Algorithms in Invariant Theory of Finite Groups , 1999 .

[5]  Uwe Storch,et al.  Über Spurfunktionen bei vollständigen Durchschnitten. , 1975 .

[6]  David M. Goldschmidt,et al.  Lectures on character theory , 1980 .

[7]  Carlo Traverso,et al.  Yet Another Ideal Decomposition Algorithm , 1997, AAECC.

[8]  P. Landrock,et al.  Finite group algebras and their modules , 1983 .

[9]  Patrizia M. Gianni,et al.  Integral closure of Noetherian rings , 1997, ISSAC.

[10]  Gregor Kemper,et al.  Invariant Rings and Fields of Finite Groups , 1997, Algorithmic Algebra and Number Theory.

[11]  Patrizia M. Gianni,et al.  Decomposition of Algebras , 1988, ISSAC.

[12]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[13]  D. Kirby,et al.  COMMUTATIVE RING THEORY (Cambridge Studies in Advanced Mathematics 8) , 1988 .

[14]  D. Benson,et al.  Representations and Cohomology , 1991 .

[15]  Richard P. Stanley,et al.  Invariants of finite groups and their applications to combinatorics , 1979 .

[16]  A. Seidenberg Construction of the integral closure of a finite integral domain. II , 1975 .

[17]  Gregor Kemper,et al.  Calculating Invariant Rings of Finite Groups over Arbitrary Fields , 1996, J. Symb. Comput..

[18]  Ralf Fröberg,et al.  How we proved that there are exactly 924 cyclic 7-roots , 1991, ISSAC '91.

[19]  Jacques Thévenaz,et al.  G-Algebras and Modular Representation Theory , 1995 .

[20]  Heinz Kredel,et al.  Some Examples for Solving Systems of Algebraic Equations by Calculating Groebner Bases , 1986, J. Symb. Comput..

[21]  Bernd Sturmfels,et al.  Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.

[22]  J. Ritt,et al.  Differential Equations from the Algebraic Standpoint , 1933 .

[23]  T. Wörmann,et al.  Radical computations of zero-dimensional ideals and real root counting , 1996 .

[24]  W. Bruns,et al.  Cohen-Macaulay rings , 1993 .

[25]  Michael Eugene Stillman,et al.  Computation of Hilbert Functions , 1992, J. Symb. Comput..

[26]  Irving Reiner,et al.  Methods of Representation Theory , 1981 .

[27]  Wolmer V. Vasconcelos,et al.  Computing the integral closure of an affine domain , 1991 .

[28]  Christoph Jansen,et al.  An Atlas of Brauer Characters , 1995 .

[29]  Larry Smith,et al.  Polynomial Invariants of Finite Groups , 1995 .

[30]  S. Chou Mechanical Geometry Theorem Proving , 1987 .

[31]  E. Noether,et al.  Der Endlichkeitssatz der Invarianten endlicher Gruppen , 1915 .

[32]  J. Ritt,et al.  Differential Equations from the Algebraic Standpoint , 1933, Nature.

[33]  David J. Benson,et al.  Polynomial invariants of finite groups , 1993 .

[34]  Larry Smith,et al.  Polynomial invariants of finite groups. A survey of recent developments , 1997 .

[35]  David R. Richman Invariants of Finite Groups over Fields of Characteristicp , 1996 .

[36]  W. Vasconcelos Arithmetic of Blowup Algebras , 1994 .

[37]  Kazuhiro Yokoyama,et al.  Localization and Primary Decomposition of Polynomial Ideals , 1996, J. Symb. Comput..

[38]  Manfred Göbel,et al.  Computing Bases for Rings of Permutation-Invariant Polynomials , 1995, J. Symb. Comput..

[39]  G. Stolzenberg,et al.  Constructive normalization of an algebraic variety , 1968 .