Multi-bernoulli sensor control via minimization of expected estimation errors

This paper presents a sensor-control method for choosing the best next state of the sensors that provide accurate estimation results in a multitarget tracking application. The proposed solution is formulated for a multi-Bernoulli filter and works via minimization of a new estimation-error-based cost function. Simulation results demonstrate that the proposed method can outperform the state-of-the-art methods in terms of computation time and robustness to clutter while delivering similar accuracy.

[1]  David Suter,et al.  Visual tracking of numerous targets via multi-Bernoulli filtering of image data , 2012, Pattern Recognit..

[2]  S. Godsill,et al.  Auxiliary Particle Implementation of the Probability Hypothesis Density Filter , 2007, 2007 5th International Symposium on Image and Signal Processing and Analysis.

[3]  David Suter,et al.  Joint Detection and Estimation of Multiple Objects From Image Observations , 2010, IEEE Transactions on Signal Processing.

[4]  Ronald P. S. Mahler,et al.  Particle-systems implementation of the PHD multitarget-tracking filter , 2003, SPIE Defense + Commercial Sensing.

[5]  P. Moral,et al.  On the Stability and the Approximation of Branching Distribution Flows, with Applications to Nonlinear Multiple Target Filtering , 2010, 1009.1845.

[6]  R. Mahler,et al.  PHD filters of higher order in target number , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[8]  Emilio Maggio,et al.  Efficient Multitarget Visual Tracking Using Random Finite Sets , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[9]  A. El-Fallah,et al.  Joint search and sensor management for geosynchronous satellites , 2008, SPIE Defense + Commercial Sensing.

[10]  Ba-Ngu Vo,et al.  A Note on the Reward Function for PHD Filters with Sensor Control , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[11]  Hung Gia Hoang,et al.  Control of a mobile sensor for multi-target tracking using multi-target/object Multi-Bernoulli filter , 2012, 2012 International Conference on Control, Automation and Information Sciences (ICCAIS).

[12]  S. Godsill,et al.  Auxiliary Particle Implementation of the Probability Hypothesis Density Filter , 2007, 2007 5th International Symposium on Image and Signal Processing and Analysis.

[13]  Daniel E. Clark,et al.  Convergence results for the particle PHD filter , 2006, IEEE Transactions on Signal Processing.

[14]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[15]  David Suter,et al.  Multi-object filtering from image sequence without detection , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[16]  Daniel E. Clark,et al.  Regional variance in target number: Analysis and application for multi-Bernoulli point processes , 2014 .

[17]  D. Braziunas POMDP solution methods , 2003 .

[18]  Esko Valkeila,et al.  An Introduction to the Theory of Point Processes, Volume II: General Theory and Structure, 2nd Edition by Daryl J. Daley, David Vere‐Jones , 2008 .

[19]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[20]  J. Møller,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2003 .

[21]  Ba-Ngu Vo,et al.  Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter , 2007, IEEE Transactions on Signal Processing.

[22]  Ba-Ngu Vo,et al.  Sensor control for multi-object state-space estimation using random finite sets , 2010, Autom..

[23]  R. Mahler,et al.  Objective functions for bayesian control-theoretic sensor management, 1: multitarget first-moment approximation , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[24]  Ba-Ngu Vo,et al.  The Cauchy–Schwarz Divergence for Poisson Point Processes , 2013, IEEE Transactions on Information Theory.

[25]  Ulrike Goldschmidt,et al.  An Introduction To The Theory Of Point Processes , 2016 .

[26]  Alireza Bab-Hadiashar,et al.  Multi-bernoulli sensor control for multi-target tracking , 2013, 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing.

[27]  Branko Ristic,et al.  Particle Filters for Random Set Models , 2013 .

[28]  Alfred O. Hero,et al.  Multi-target Sensor Management Using Alpha-Divergence Measures , 2003, IPSN.

[29]  Murat Üney,et al.  Regional Variance for Multi-Object Filtering , 2013, IEEE Transactions on Signal Processing.

[30]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[31]  Ronald P. S. Mahler,et al.  Global posterior densities for sensor management , 1998, Defense, Security, and Sensing.

[32]  Alireza Bab-Hadiashar,et al.  Robust Multi-Bernoulli Sensor Selection for Multi-Target Tracking in Sensor Networks , 2013, IEEE Signal Processing Letters.

[33]  Franz S. Hover,et al.  Tracking random finite objects using 3D-LIDAR in marine environments , 2010, SAC '10.

[34]  Ba-Ngu Vo,et al.  Convergence Analysis of the Gaussian Mixture PHD Filter , 2007, IEEE Transactions on Signal Processing.

[35]  Ronald Mahler,et al.  Probabilistic objective functions for sensor management , 2004, SPIE Defense + Commercial Sensing.

[36]  Ba-Tuong Vo,et al.  Control of sensor with unknown clutter and detection profile using Multi-Bernoulli filter , 2013, Proceedings of the 16th International Conference on Information Fusion.

[37]  Ba-Ngu Vo,et al.  The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations , 2009, IEEE Transactions on Signal Processing.

[38]  Ba-Tuong Vo,et al.  Sensor management for multi-target tracking via multi-Bernoulli filtering , 2013, Autom..

[39]  Ba-Ngu Vo,et al.  A Random-Finite-Set Approach to Bayesian SLAM , 2011, IEEE Transactions on Robotics.

[40]  Ronald Mahler,et al.  MULTITARGET SENSOR MANAGEMENT OF DISPERSED MOBILE SENSORS , 2004 .

[41]  X. R. Li,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .

[42]  David Suter,et al.  Bayesian integration of audio and visual information for multi-target tracking using a CB-member filter , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[43]  Hung Gia Hoang Control of a mobile sensor for multi-target tracking using multi-target/object Multi-Bernoulli filter , 2012, ICCA 2012.

[44]  Lawrence Carin,et al.  Stochastic Control Theory for Sensor Management , 2008 .

[45]  Ba-Ngu Vo,et al.  Visual Tracking in Background Subtracted Image Sequences via Multi-Bernoulli Filtering , 2013, IEEE Transactions on Signal Processing.

[46]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[47]  Ba-Ngu Vo,et al.  On performance evaluation of multi-object filters , 2008, 2008 11th International Conference on Information Fusion.

[48]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[49]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[50]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[51]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[52]  Walter S. Kuklinski,et al.  Random Set Tracker Experiment on a Road Constrained Network with Resource Management , 2006, 2006 9th International Conference on Information Fusion.