BOREL FUNCTORS AND INFINITARY INTERPRETATIONS
暂无分享,去创建一个
Matthew Harrison-Trainor | Antonio Montalbán | Russell G. Miller | A. Montalbán | M. Harrison-Trainor | Russell G. Miller
[1] Antonio Montalbán. A fixed point for the jump operator on structures , 2013, J. Symb. Log..
[2] John T. Baldwin,et al. Three red herrings around Vaught’s conjecture , 2015 .
[3] Julia A. Knight,et al. Computable structures and the hyperarithmetical hierarchy , 2000 .
[4] David M. Evans,et al. Counterexamples to a Conjecture on Relative Categoricity , 1990, Ann. Pure Appl. Log..
[5] Antonio Montalbán,et al. Computability theoretic classifications for classes of structures , 2014 .
[6] Saharon Shelah,et al. Can you take Solovay’s inaccessible away? , 1984 .
[7] David W. Kueker,et al. Definability, automorphisms, and infinitary languages , 1968 .
[8] Greg Hjorth. A Note on Counterexamples to the Vaught Conjecture , 2007, Notre Dame J. Formal Log..
[9] Antonio Montalbán,et al. A robuster Scott rank , 2015 .
[10] Arkadii M. Slinko,et al. Degree spectra and computable dimensions in algebraic structures , 2002, Ann. Pure Appl. Log..
[11] R. Solovay. A model of set-theory in which every set of reals is Lebesgue measurable* , 1970 .
[12] Matthew Harrison-Trainor,et al. Computable Functors and Effective interpretability , 2017, J. Symb. Log..
[13] Martin Ziegler,et al. Quasi finitely axiomatizable totally categorical theories , 1986, Ann. Pure Appl. Log..
[14] Julia F. Knight,et al. Some new computable structures of high rank , 2016, 1606.00900.
[15] Su Gao. Invariant Descriptive Set Theory , 2008 .