A lexicographic pricer for the fractional bin packing problem

Abstract We propose an exact lexicographic dynamic programming pricing algorithm for solving the Fractional Bin Packing Problem with column generation. The new algorithm is designed for generating maximal columns of minimum reduced cost which maximize, lexicographically, one of the measures of maximality we investigate. Extensive computational experiments reveal that a column generation algorithm based on this pricing technique can achieve a substantial reduction in the number of columns and the computing time, also when combined with a classical smoothing technique from the literature.

[1]  Egon Balas,et al.  Lexicography and degeneracy: can a pure cutting plane algorithm work? , 2011, Math. Program..

[2]  José M. Valério de Carvalho,et al.  LP models for bin packing and cutting stock problems , 2002, Eur. J. Oper. Res..

[3]  François Vanderbeck,et al.  Implementing Mixed Integer Column Generation , 2005 .

[4]  Marco Molinaro,et al.  Approximating polyhedra with sparse inequalities , 2015, Math. Program..

[5]  Gleb Belov,et al.  A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional two-stage cutting , 2006, Eur. J. Oper. Res..

[6]  Louis-Martin Rousseau Stabilization Issues for Constraint Programming Based Column Generation , 2004, CPAIOR.

[7]  José M. Valério de Carvalho,et al.  Using Extra Dual Cuts to Accelerate Column Generation , 2005, INFORMS J. Comput..

[8]  Antonio Frangioni,et al.  A stabilized structured Dantzig–Wolfe decomposition method , 2012, Mathematical Programming.

[9]  Ruslan Sadykov,et al.  Automation and Combination of Linear-Programming Based Stabilization Techniques in Column Generation , 2018, INFORMS J. Comput..

[10]  Jacques Desrosiers,et al.  On the choice of explicit stabilizing terms in column generation , 2007, Discret. Appl. Math..

[11]  Pierre Hansen,et al.  Stabilized column generation , 1998, Discret. Math..

[12]  Edoardo Amaldi,et al.  Improving Cutting Plane Generation with 0-1 Inequalities by Bi-criteria Separation , 2010, SEA.

[13]  Mauro Dell'Amico,et al.  Friendly bin packing instances without Integer Round-up Property , 2015, Math. Program..

[14]  Marco Molinaro,et al.  Theoretical challenges towards cutting-plane selection , 2018, Math. Program..

[15]  Manuel Iori,et al.  Bin packing and cutting stock problems: Mathematical models and exact algorithms , 2016, Eur. J. Oper. Res..

[16]  A. A. Farley A Note on Bounding a Class of Linear Programming Problems, Including Cutting Stock Problems , 1990, Oper. Res..

[17]  Daniele Vigo,et al.  Bin packing approximation algorithms: Survey and classification , 2013 .

[18]  Ivana Ljubic,et al.  An effective dynamic programming algorithm for the minimum-cost maximal knapsack packing problem , 2017, Eur. J. Oper. Res..

[19]  J. V. D. Carvalho,et al.  Cutting Stock Problems , 2005 .

[20]  Federico Malucelli,et al.  Exact Solution of Graph Coloring Problems via Constraint Programming and Column Generation , 2012, INFORMS J. Comput..

[21]  J. Desrosiers,et al.  A Primer in Column Generation , 2005 .

[22]  Cláudio Alves,et al.  A survey of dual-feasible and superadditive functions , 2010, Ann. Oper. Res..

[23]  Matteo Fischetti,et al.  Optimizing over the first Chvátal closure , 2005, Math. Program..

[24]  Stefano Coniglio,et al.  On the Generation of Cutting Planes which Maximize the Bound Improvement , 2015, SEA.

[25]  Jacques Desrosiers,et al.  Selected Topics in Column Generation , 2002, Oper. Res..

[26]  Andrew Lim,et al.  A New Branch-and-Price-and-Cut Algorithm for One-Dimensional Bin-Packing Problems , 2020, INFORMS J. Comput..

[27]  Paul Wentges Weighted Dantzig-Wolfe decomposition for linear mixed-integer programming , 1997 .

[28]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[29]  Edoardo Amaldi,et al.  Coordinated cutting plane generation via multi-objective separation , 2014, Math. Program..

[30]  Egon Balas,et al.  Optimizing over the split closure , 2008, Math. Program..

[31]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .