Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems

We study the quantum-jump-based feedback control on the entanglement shared between two qubits with one of them subject to decoherence while the other qubit is under the control. This situation is very relevant to a quantum system consisting of nuclear and electron spins in solid states. The possibility of prolonging the coherence time of the dissipative qubit is also explored. Numerical simulations show that the quantum-jump-based feedback control can improve the entanglement between the qubits and prolong the coherence time for the qubit subject directly to decoherence.

[1]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[2]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[3]  H. Cheong,et al.  Coherent manipulation of electronic States in a double quantum dot. , 2003, Physical review letters.

[4]  Timothy F. Havel,et al.  Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer , 1999, quant-ph/9908012.

[5]  J. J. Hope,et al.  Controlling entanglement by direct quantum feedback , 2008, 0807.1144.

[6]  C. Altafini,et al.  QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 2357 Controllability properties for finite dimensional quantum Markovian master equations , 2002, quant-ph/0211194.

[7]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[8]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[9]  Thaddeus D. Ladd,et al.  Coherence time of decoupled nuclear spins in silicon , 2005 .

[10]  J. J. Hope,et al.  Stabilizing entanglement by quantum-jump-based feedback , 2007 .

[11]  S. Attal Quantum Noises , 2004 .

[13]  G. J. Milburn,et al.  Dynamical creation of entanglement by homodyne-mediated feedback (9 pages) , 2004, quant-ph/0409154.

[14]  P Cappellaro,et al.  Coherence and control of quantum registers based on electronic spin in a nuclear spin bath. , 2009, Physical review letters.

[15]  Tzyh Jong Tarn,et al.  Decoherence control in open quantum systems via classical feedback , 2007 .

[16]  R. S. Said,et al.  Robust control of entanglement in a nitrogen-vacancy center coupled to a C 13 nuclear spin in diamond , 2009, 0903.3827.

[17]  D. Suter,et al.  NMR quantum simulation of localization effects induced by decoherence. , 2010, Physical review letters.

[18]  F K Wilhelm,et al.  Optimal control of a qubit coupled to a non-Markovian environment. , 2006, Physical review letters.

[19]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[20]  G. Rempe,et al.  Trapping and observing single atoms in a blue-detuned intracavity dipole trap. , 2007, Physical review letters.

[21]  D. DiVincenzo,et al.  Dephasing of a superconducting qubit induced by photon noise. , 2005, Physical review letters.

[22]  Heteronuclear coherence transfer in solid-state nuclear magnetic resonance using a γ-encoded transferred echo experiment , 2003 .

[23]  F. Schmidt-Kaler,et al.  Bell states of atoms with ultralong lifetimes and their tomographic state analysis. , 2004, Physical review letters.

[24]  Jing Zhang,et al.  Maximal suppression of decoherence in Markovian quantum systems , 2005 .

[25]  D. Cory,et al.  Simulations of information transport in spin chains. , 2007, Physical review letters.

[26]  Navin Khaneja,et al.  Composite dipolar recoupling: anisotropy compensated coherence transfer in solid-state nuclear magnetic resonance. , 2006, The Journal of chemical physics.

[27]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[28]  Mark A Ratner,et al.  Decoherence control by tracking a Hamiltonian reference molecule. , 2007, Physical review letters.

[29]  Stefano Mancini,et al.  Bayesian feedback versus Markovian feedback in a two-level atom , 2002 .