Giant and controllable Goos-Hänchen shifts based on surface plasmon resonance with graphene-MoS2 heterostructure

Surface plasmon resonance (SPR) with two-dimensional (2D) materials has been proposed to enhance the sensitivity of biosensors. Here, we will apply SPR to greatly enhance and control the Goos-Hanchen (GH) shift. It is theoretically shown that the GH shifts can be significantly enhanced in the SPR structure coated with a graphene-MoS2 heterostructure. By changing the layer number of graphene or MoS2, the giant GH shifts can be obtained. Maximum GH shift (235.8λ) can be obtained when 2 layers of MoS2 and 3 layers of graphene are combined. Moreover, the GH shift can be positive or negative depending on the layer number of MoS2 and graphene. When the GH shift is used as the interrogation for the biosensor, it has a superior sensitivity. By comparing the sensitivity based on the SPR with only Au coating or Au-graphene coating, the sensitivity of the GH shift-interrogated biosensor can be enhanced by nearly 300 times, and hence paves the way for further applications in fundamental biological studies and environmental monitoring.

[1]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[2]  Xiang-Min Meng,et al.  Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors , 2015 .

[3]  H. Chu,et al.  Highly sensitive graphene biosensors based on surface plasmon resonance. , 2010, Optics express.

[4]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[5]  Marios Mattheakis,et al.  Manipulating polarized light with a planar slab of black phosphorus , 2017, 1703.06383.

[6]  H. Macleod,et al.  Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties. , 1997, Biophysical journal.

[7]  Madan Dubey,et al.  Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. , 2014, Nano letters.

[8]  F. Xia,et al.  Photoconductivity of biased graphene , 2012, Nature Photonics.

[9]  C. Soukoulis,et al.  Photonic band gap of a graphene-embedded quarter-wave stack , 2013, 1311.7037.

[10]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[11]  K. Thygesen Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures , 2017 .

[12]  Reza Safian,et al.  Significant enhancement in the efficiency of photoconductive antennas using a hybrid graphene molybdenum disulphide structure , 2016 .

[13]  S. Wen,et al.  Negative and positive Goos–Hänchen shifts of a light beam transmitted from an indefinite medium slab , 2007 .

[14]  C. Soukoulis,et al.  Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances , 2018 .

[15]  D. Heitmann,et al.  Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration , 1999 .

[16]  Gabriele Navickaite,et al.  Hybrid 2D–0D MoS2–PbS Quantum Dot Photodetectors , 2015, Advanced materials.

[17]  G. Rubio‐Bollinger,et al.  Optical identification of atomically thin dichalcogenide crystals , 2010, 1003.2602.

[18]  F. Goos,et al.  Ein neuer und fundamentaler Versuch zur Totalreflexion , 1947 .

[19]  Reza Safian,et al.  Hybrid graphene–molybdenum disulphide based ring resonator for label-free sensing , 2016 .

[20]  Lain‐Jong Li,et al.  Graphene/MoS2 Heterostructures for Ultrasensitive Detection of DNA Hybridisation , 2014, Advanced materials.

[21]  Stefano Borini,et al.  Optical constants of graphene layers in the visible range , 2009 .

[22]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.

[23]  M. Merano,et al.  Optical beam shifts in graphene and single-layer boron-nitride. , 2016, Optics letters.

[24]  Tingting Tang,et al.  Magneto-optical Goos-Hänchen effect in a prism-waveguide coupling structure. , 2014, Optics express.

[25]  S. Wen,et al.  Electrically Tunable Goos–Hänchen Shift of Light Beam Reflected From a Graphene-on-Dielectric Surface , 2013, IEEE Photonics Journal.

[26]  M. Daimon,et al.  Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. , 2007, Applied optics.

[27]  F. Goos,et al.  Neumessung des Strahlversetzungseffektes bei Totalreflexion , 1949 .

[28]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[29]  Control of the Goos-Hänchen shift of a light beam via a coherent driving field , 2007, 0709.3565.

[30]  J. Wiersig,et al.  Measurement of the Goos–Hänchen shift in a microwave cavity , 2010, 1010.5102.

[31]  Banshi D. Gupta,et al.  Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study , 2005 .

[32]  S. Wen,et al.  Electrically controlled Goos-Hänchen shift of a light beam reflected from the metal-insulator-semiconductor structure. , 2013, Optics express.

[33]  Marios Mattheakis,et al.  Epsilon-near-zero behavior from plasmonic Dirac point: Theory and realization using two-dimensional materials , 2016 .

[34]  Yuancheng Fan,et al.  Tunable Terahertz Meta-Surface with Graphene Cut-Wires , 2015 .

[35]  Zouheir Sekkat,et al.  Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors , 2015 .

[36]  F. Bretenaker,et al.  Measurement of positive and negative Goos--Hänchen effects for metallic gratings near Wood anomalies. , 2001, Optics letters.

[37]  Sylvain Girard,et al.  Simple technique for measuring the Goos-Hänchen effect with polarization modulation and a position-sensitive detector. , 2002, Optics letters.

[38]  R. Piner,et al.  Transfer of large-area graphene films for high-performance transparent conductive electrodes. , 2009, Nano letters.

[39]  Pengfei Zhu,et al.  Large positive and negative lateral optical beam shift in prism-waveguide coupling system. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Nicholas X. Fang,et al.  Large positive and negative lateral optical beam displacements due to surface plasmon resonance , 2004 .

[41]  Constantinos A. Valagiannopoulos ON EXAMINING THE INFLUENCE OF A THIN DIELECTRIC STRIP POSED ACROSS THE DIAMETER OF A PENETRABLE RADIATING CYLINDER , 2008 .

[42]  C. Soukoulis,et al.  Electrically Tunable Goos–Hänchen Effect with Graphene in the Terahertz Regime , 2016 .

[43]  K. Artmann Berechnung der Seitenversetzung des totalreflektierten Strahles , 1948 .

[44]  I. Pockrand,et al.  Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings , 1978 .

[45]  J. P. Woerdman,et al.  Observation of Goos-Hänchen shifts in metallic reflection. , 2007, Optics express.

[46]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[47]  Choon How Gan,et al.  Analysis of surface plasmon excitation at terahertz frequencies with highly doped graphene sheets via attenuated total reflection , 2012, 1303.0438.

[48]  P. Gopalan,et al.  Light-driven reversible modulation of doping in graphene. , 2012, Nano letters.