A high-gain complementary metal-oxide semiconductor op amp using composite cascode stages

In this work, a complementary metal-oxide semiconductor (CMOS) op amp design using composite cascode stages is reported. The design follows the classic Widlar architecture and is fabricated on a 0.25 μm CMOS process. The measured gain of 117 dB is comparable to that achieved in bipolar designs in this architecture. This design is suited for precision instrumentation applications where high gain, low input offset voltage and small cell size are important. It provides a common-mode input range of −1 to 0.7 V using±1 V power supplies with a quiescent current of 55 μA. The use of the composite cascode also allows for dominant pole compensation with a single capacitor. A phase margin of 43° is achieved with a 3.5 pF compensation capacitor. The resulting cell size for the core op-amp circuit is approximately 24 × 16 mils, including large common centroid input devices that achieve an input offset voltage in the 1 mV range.

[1]  Carlos Galup-Montoro,et al.  Series-parallel association of FET's for high gain and high frequency applications , 1994, IEEE J. Solid State Circuits.

[2]  Bing J. Sheu,et al.  BSIM: Berkeley short-channel IGFET model for MOS transistors , 1987 .

[3]  Un-Ku Moon,et al.  A 1.8 V CMOS DAC cell with ultra high gain op-amp in 0.0143 mm/sup 2/ , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[4]  Hong June Park,et al.  A design guide for 3-stage CMOS nested Gm-C operational amplifier with area or current minimization , 2008, 2008 International SoC Design Conference.

[5]  Phillip E Allen,et al.  CMOS Analog Circuit Design , 1987 .

[6]  G. Sou,et al.  A CMOS op amp using a regulated-cascode transimpedance building block for high-gain, low-voltage achievement , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[7]  Erik Bruun A high-speed CMOS current op amp for very low supply voltage operation , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[8]  Donald T. Comer,et al.  The utility of the composite cascode in analog CMOS design , 2004 .

[9]  R. Lotfi,et al.  Design of Cascode-Compensated Opamps Based on Settling Time and Open-Loop Parameters , 2006, 2006 NORCHIP.

[10]  Lisha Li,et al.  High Gain Low Power Operational Amplifier Design and Compensation Techniques , 2007 .

[11]  David J. Comer,et al.  Fundamentals Of Electronic Circuit Design , 2002 .

[12]  H. Zimmermann,et al.  120nm CMOS OPAMP with 690 MHz f/sub T/ and 128 dB DC gain , 2005, Proceedings of the 31st European Solid-State Circuits Conference, 2005. ESSCIRC 2005..

[13]  D.J. Comer,et al.  Using the weak inversion region to optimize input stage design of CMOS op amps , 2004, IEEE Trans. Circuits Syst. II Express Briefs.

[14]  Michael J. Paulus,et al.  Modeling and simulation of short-channel MOSFETs operating in deep weak inversion , 1998, 1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268).

[15]  David J. Comer,et al.  Optimization of MOS amplifier performance through channel length and inversion level selection , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  Hoda S. Abdel-Aty-Zohdy,et al.  Compact High Gain CMOS Op Amp Design using Comparators , 1999 .

[17]  Phillip E. Allen,et al.  A 1.75 V rail-to-rail CMOS op amp , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[18]  Alan B. Grebene,et al.  Analog Integrated Circuit Design , 1978 .

[19]  David A. Johns,et al.  Analog Integrated Circuit Design , 1996 .