Semidefinite Programming Relaxations for the Graph Partitioning Problem
暂无分享,去创建一个
[1] Franz Rendl,et al. Solving Graph Bisection Problems with Semidefinite Programming , 2000, INFORMS J. Comput..
[2] Henry Wolkowicz,et al. On Lagrangian Relaxation of Quadratic Matrix Constraints , 2000, SIAM J. Matrix Anal. Appl..
[3] Xiong Zhang,et al. Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..
[4] Qing Zhao. Semidefinite programming for assignment and partitioning problems , 1998 .
[5] Franz Rendl,et al. Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..
[6] S. E. Karisch,et al. Semideenite Programming and Graph Equipartition , 1998 .
[7] Franz Rendl,et al. A projection technique for partitioning the nodes of a graph , 1995, Ann. Oper. Res..
[8] Farid Alizadeh,et al. Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..
[9] Franz Rendl,et al. A computational study of graph partitioning , 1994, Math. Program..
[10] Peter L. Hammer,et al. Discrete Applied Mathematics , 1993 .
[11] Egon Balas,et al. A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..
[12] Brian L. Mark,et al. An efficient eigenvector approach for finding netlist partitions , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[13] H. Wolkowicz,et al. A Recipe for Semide nite Relaxation for ( 0 , 1 )-Quadratic ProgrammingS , 1992 .
[14] Alexander Schrijver,et al. Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..
[15] Thomas Lengauer,et al. Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.
[16] M. Er. Quadratic optimization problems in robust beamforming , 1990 .
[17] Thomas Lengauer,et al. Introduction to Circuit Layout , 1990 .
[18] L. Ingber. Very fast simulated re-annealing , 1989 .
[19] L. Ingber. Draft of Paper Appearing In: %a L. Ingber %t Very Fast Simulated Re-annealing %j Mathl. Comput. Modelling %v 12 Very Fast Simulated Re-annealing Very Fast Re-annealing -2- Lester Ingber , 1989 .
[20] G. P. Barker,et al. Cones of diagonally dominant matrices , 1975 .
[21] A. Hoffman,et al. Lower bounds for the partitioning of graphs , 1973 .
[22] G. P. Barker. The lattice of faces of a finite dimensional cone , 1973 .
[23] Brian W. Kernighan,et al. An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..