Semidefinite Programming Relaxations for the Graph Partitioning Problem

[1]  Franz Rendl,et al.  Solving Graph Bisection Problems with Semidefinite Programming , 2000, INFORMS J. Comput..

[2]  Henry Wolkowicz,et al.  On Lagrangian Relaxation of Quadratic Matrix Constraints , 2000, SIAM J. Matrix Anal. Appl..

[3]  Xiong Zhang,et al.  Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..

[4]  Qing Zhao Semidefinite programming for assignment and partitioning problems , 1998 .

[5]  Franz Rendl,et al.  Semidefinite Programming Relaxations for the Quadratic Assignment Problem , 1998, J. Comb. Optim..

[6]  S. E. Karisch,et al.  Semideenite Programming and Graph Equipartition , 1998 .

[7]  Franz Rendl,et al.  A projection technique for partitioning the nodes of a graph , 1995, Ann. Oper. Res..

[8]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[9]  Franz Rendl,et al.  A computational study of graph partitioning , 1994, Math. Program..

[10]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[11]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[12]  Brian L. Mark,et al.  An efficient eigenvector approach for finding netlist partitions , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[13]  H. Wolkowicz,et al.  A Recipe for Semide nite Relaxation for ( 0 , 1 )-Quadratic ProgrammingS , 1992 .

[14]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[15]  Thomas Lengauer,et al.  Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.

[16]  M. Er Quadratic optimization problems in robust beamforming , 1990 .

[17]  Thomas Lengauer,et al.  Introduction to Circuit Layout , 1990 .

[18]  L. Ingber Very fast simulated re-annealing , 1989 .

[19]  L. Ingber Draft of Paper Appearing In: %a L. Ingber %t Very Fast Simulated Re-annealing %j Mathl. Comput. Modelling %v 12 Very Fast Simulated Re-annealing Very Fast Re-annealing -2- Lester Ingber , 1989 .

[20]  G. P. Barker,et al.  Cones of diagonally dominant matrices , 1975 .

[21]  A. Hoffman,et al.  Lower bounds for the partitioning of graphs , 1973 .

[22]  G. P. Barker The lattice of faces of a finite dimensional cone , 1973 .

[23]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..