Mining Economic Sentiment Using Argumentation Structures

The recent turmoil in the financial markets has demonstrated the growing need for automated information monitoring tools that can help to identify the issues and patterns that matter and that can track and predict emerging events in business and economic processes. One of the techniques that can address this need is sentiment mining. Existing approaches enable the analysis of a large number of text documents, mainly based on their statistical properties and possibly combined with numeric data. Most approaches are limited to simple word counts and largely ignore semantic and structural aspects of content. Yet, argumentation plays an important role in expressing and promoting an opinion. Therefore, we propose a framework that allows the incorporation of information on argumentation structure in the models for economic sentiment discovery in text.

[1]  Yi Mao Sequential Models for Sentiment Prediction , 2006 .

[2]  M. Coşgel,et al.  Rhetoric in the economy: consumption and audience , 1992 .

[3]  Sydney C. Ludvigson,et al.  Consumer Confidence and Consumer Spending , 2004 .

[4]  Janyce Wiebe,et al.  Computing Attitude and Affect in Text: Theory and Applications , 2005, The Information Retrieval Series.

[5]  M. Felisa Verdejo,et al.  Techniques for Recognizing Textual Entailment and Semantic Equivalence , 2005, CAEPIA.

[6]  Ee-Peng Lim,et al.  Comments-oriented blog summarization by sentence extraction , 2007, CIKM '07.

[7]  Marcus Kracht,et al.  The emergence of syntactic structure , 2007 .

[8]  Alberto Bugarín,et al.  Current Topics in Artificial Intelligence, 11th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2005, Santiago de Compostela, Spain, November 16-18, 2005, Revised Selected Papers , 2006, CAEPIA.

[9]  Matthew Stone,et al.  Anaphora and Discourse Structure , 2001, CL.

[10]  Philip Hans Franses,et al.  Measuring changes in consumer confidence , 2008 .

[11]  Machdel C. Matthee,et al.  Differentiating data- and text-mining terminology , 2003 .

[12]  Maria Vargas-Vera,et al.  Automatic extraction of knowledge from student essays , 2005, Int. J. Knowl. Learn..

[13]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[14]  Marti A. Hearst Untangling Text Data Mining , 1999, ACL.

[15]  Alicia Ageno,et al.  Adaptive information extraction , 2006, CSUR.

[16]  John Blitzer,et al.  Domain Adaptation with Structural Correspondence Learning , 2006, EMNLP.

[17]  Maurizio Bovi,et al.  Economic versus Psychological Forecasting. Evidence from Consumer Confidence Surveys , 2009 .

[18]  Marie-Francine Moens,et al.  Argumentation mining: the detection, classification and structure of arguments in text , 2009, ICAIL.

[19]  R. Shiller Conversation, Information, and Herd Behavior , 1995 .

[20]  Maria Vargas-Vera,et al.  Event Recognition on News Stories and Semi-Automatic Population of an Ontology , 2004, IEEE/WIC/ACM International Conference on Web Intelligence (WI'04).

[21]  Lucila Ohno-Machado,et al.  Natural language processing: an introduction , 2011, J. Am. Medical Informatics Assoc..

[22]  Dayne Freitag,et al.  Machine Learning for Information Extraction in Informal Domains , 2000, Machine Learning.

[23]  E. Philip Howrey,et al.  The Predictive Power of the Index of Consumer Sentiment , 2001 .

[24]  J. Blau,et al.  Talk Is Cheap , 2006, IEEE Spectrum.

[25]  Hamish Cunningham,et al.  GATE-a General Architecture for Text Engineering , 1996, COLING.

[26]  Carolyn F. Holton,et al.  Identifying disgruntled employee systems fraud risk through text mining: A simple solution for a multi-billion dollar problem , 2009, Decis. Support Syst..

[27]  John Domingue,et al.  Visualizing Internetworked Argumentation , 2003, Visualizing Argumentation.

[28]  Daniel Marcu,et al.  The rhetorical parsing of unrestricted texts: a surface-based approach , 2000, CL.

[29]  D. Mccloskey,et al.  One Quarter of GDP Is Persuasion , 1995 .

[30]  Simone Teufel,et al.  Argumentative zoning information extraction from scientific text , 1999 .

[31]  Ronen Feldman,et al.  Book Reviews: The Text Mining Handbook: Advanced Approaches to Analyzing Unstructured Data by Ronen Feldman and James Sanger , 2008, CL.

[32]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[33]  F. Gerard Adams,et al.  Explaining and Predicting Aggregative Consumer Attitudes , 1965 .

[34]  Simon Buckingham Shum,et al.  Visualizing Argumentation: Software Tools for Collaborative and Educational Sense-Making , 2012 .

[35]  Walter Daelemans,et al.  Memory-Based Language Processing , 2009, Studies in natural language processing.

[36]  J. Vuchelen,et al.  Consumer sentiment and macroeconomic forecasts , 2004 .

[37]  Khurshid Ahmad,et al.  Sentiment Polarity Identification in Financial News: A Cohesion-based Approach , 2007, ACL.

[38]  W. Mann,et al.  Rhetorical Structure Theory: looking back and moving ahead , 2006 .

[39]  Larry D. Browning,et al.  The Application of Rhetorical Theory in Managerial Research , 2008 .

[40]  Liang Zhou,et al.  On the Summarization of Dynamically Introduced Information: Online Discussions and Blogs , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[41]  I. Arnold,et al.  Fundamental uncertainty and stock market volatility , 2008 .

[42]  Barbara J. Grosz,et al.  Natural-Language Processing , 1982, Artificial Intelligence.