Application of Casing Circumferential Grooves for Improved Stall Margin in a Transonic Axial Compressor

Experimental and numerical investigations were conducted to study the fundamental flow mechanisms of circumferential grooves in the casing of a transonic compressor and their influence on compressor stall margin. Three different groove configurations were tested in a highly loaded transonic compressor. Experimental results show that circumferential grooves increase the stall margin of the compressor at the tested operating condition. Grooves with a much smaller depth than conventional designs are shown to be similarly effective in increasing the stall margin. Steady-state Navier-Stokes analyses were performed to study flow structures associated with each casing treatment. The numerical procedure calculates the overall effects of the circumferential grooves correctly. Detailed investigation of calculated flow fields indicates that losses are generated by interaction between the main passage flow and flow exiting the grooves. The grooves increase the stall margin by reducing the flow incidence angle on the pressure side of the leading edge, despite an overall increase in the endwall boundary layer thickness. This is due to complex interaction of the main passage flow with the additional radial and tangential flows created by the grooves.Copyright © 2002 by ASME