Long Memory, Realized Volatility and Heterogeneous Autoregressive Models

The presence of long memory in realized volatility (RV) is a widespread stylized fact. The origins of long memory in RV have been attributed to jumps, structural breaks, contemporaneous aggregation, nonlinearities, or pure long memory. An important development has been the heterogeneous autoregressive (HAR) model and its extensions. This article assesses the separate roles of fractionally integrated long memory models, extended HAR models and time varying parameter HAR models. We find that the presence of the long memory parameter is often important in addition to the HAR models.

[1]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[2]  Richard T. Baillie,et al.  Long memory processes and fractional integration in econometrics , 1996 .

[3]  Timo Teräsvirta,et al.  A simple nonlinear time series model with misleading linear properties , 1999 .

[4]  N. Shephard,et al.  Advances in Economics and Econometrics: Variation, Jumps, and High-Frequency Data in Financial Econometrics , 2007 .

[5]  P. Sibbertsen,et al.  A Simple Test on Structural Change in Long-Memory Time Series , 2018 .

[6]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[7]  F. Diebold,et al.  Long Memory and Regime Switching , 2000 .

[8]  Kevin Sheppard,et al.  Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility , 2013, Review of Economics and Statistics.

[9]  M. Medeiros,et al.  A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries , 2008 .

[10]  Yacine Ait-Sahalia,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[11]  George Kapetanios,et al.  Nonlinear models for strongly dependent processes with financial applications , 2008 .

[12]  F. Diebold,et al.  VOLATILITY AND CORRELATION FORECASTING , 2006 .

[13]  T. Bollerslev,et al.  Risk and Return: Long-Run Relationships, Fractional Cointegration, and Return Predictability , 2013 .

[14]  Neil Shephard,et al.  Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise , 2008 .

[15]  Morten Ørregaard Nielsen,et al.  A FAST FRACTIONAL DIFFERENCE ALGORITHM , 2013 .

[16]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[17]  M. Taqqu,et al.  Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series , 1986 .

[18]  B. Christensen,et al.  The Effect of Long Memory in Volatility on Stock Market Fluctuations , 2007, The Review of Economics and Statistics.

[19]  Liudas Giraitis,et al.  Nonstationarity-Extended Local Whittle Estimation , 2006 .

[20]  M. T. Greene,et al.  Long-term dependence in common stock returns , 1977 .

[21]  B. Christensen,et al.  The Role of Implied Volatility in Forecasting Future Realized Volatility and Jumps in Foreign Exchange, Stock, and Bond Markets , 2007 .

[22]  Long Memory in Stock Market Volatility and the Volatility-in-Mean Effect: The FIEGARCH-M Model , 2007 .

[23]  Walter Krämer,et al.  The CUSUM test for OLS residuals , 1992 .

[24]  Federico M. Bandi,et al.  Microstructure Noise, Realized Variance, and Optimal Sampling , 2008 .

[25]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[26]  C. Granger Long memory relationships and the aggregation of dynamic models , 1980 .

[27]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[28]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[29]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[30]  F. Diebold,et al.  Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility , 2005, The Review of Economics and Statistics.

[31]  James Davidson,et al.  Generating Schemes for Long Memory Processes: Regimes, Aggregation and Linearity , 2005 .

[32]  Bin Zhou,et al.  High Frequency Data and Volatility in Foreign Exchange Rates , 2013 .

[33]  Philipp Sibbertsen,et al.  Long memory versus structural breaks: An overview , 2004 .

[34]  Morten Ørregaard Nielsen,et al.  Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration , 2005 .

[35]  Yuzo Hosoya,et al.  A limit theory for long-range dependence and statistical inference on related models , 1997 .

[36]  T. Bollerslev,et al.  MODELING AND PRICING LONG- MEMORY IN STOCK MARKET VOLATILITY , 1996 .

[37]  C. Granger,et al.  Varieties of long memory models , 1996 .

[38]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[39]  Peter C. B. Phillips,et al.  Exact Local Whittle Estimation of Fractional Integration , 2002 .

[40]  J. R. Wallis,et al.  Noah, Joseph, and Operational Hydrology , 1968 .

[41]  G. Kapetanios,et al.  Inference on Multivariate Heteroscedastic Time Varying Random Coefficient Models , 2018 .

[42]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[43]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[44]  A FAST FRACTIONAL DIFFERENCE ALGORITHM , 2014 .

[45]  P. Mykland,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[46]  Zhou Zhou,et al.  “A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High-Frequency Data” , 2005 .

[47]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[48]  N. Shephard,et al.  Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise , 2006 .

[49]  G. Kapetanios,et al.  Inference on stochastic time-varying coefficient models , 2014 .

[50]  B. Christensen,et al.  Long Memory in Stock Market Volatility and the Volatility-in-Mean Effect: The FIEGARCH-M Model , 2007 .

[51]  B. Christensen,et al.  Asymptotic normality of narrow-band least squares in the stationary fractional cointegration model and volatility forecasting , 2006 .

[52]  G. Kapetanios,et al.  Estimation and Inference for Impulse Response Functions from Univariate Strongly Persistent Processes , 2013 .

[53]  H. Hurst,et al.  A Suggested Statistical Model of some Time Series which occur in Nature , 1957, Nature.

[54]  Lan Zhang Efficient Estimation of Stochastic Volatility Using Noisy Observations: A Multi-Scale Approach , 2004, math/0411397.

[55]  C. Granger,et al.  Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns , 2004 .

[56]  Kevin Sheppard,et al.  Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes , 2012 .