Survey of Data Mining Approaches to User Modeling for Adaptive Hypermedia

The ability of an adaptive hypermedia system to create tailored environments depends mainly on the amount and accuracy of information stored in each user model. Some of the difficulties that user modeling faces are the amount of data available to create user models, the adequacy of the data, the noise within that data, and the necessity of capturing the imprecise nature of human behavior. Data mining and machine learning techniques have the ability to handle large amounts of data and to process uncertainty. These characteristics make these techniques suitable for automatic generation of user models that simulate human decision making. This paper surveys different data mining techniques that can be used to efficiently and accurately capture user behavior. The paper also presents guidelines that show which techniques may be used more efficiently according to the task implemented by the application

[1]  Fabio Abbattista,et al.  Learning Interaction Models in a Digital Library Service , 2001, User Modeling.

[2]  Tsvi Kuflik,et al.  Automating Personal Categorization Using Artificial Neural Networks , 2001, User Modeling.

[3]  Anupam Joshi,et al.  On Mining Web Access Logs , 2000, ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

[4]  Dustin Boswell,et al.  Introduction to Support Vector Machines , 2002 .

[5]  Bin Zhu,et al.  A Collection of Visual Thesauri for Browsing Large Collections of Geographic Images , 1999, J. Am. Soc. Inf. Sci..

[6]  Gregory M. P. O'Hare,et al.  A Connectionist Model of Spatial Knowledge Acquisition in a Virtual Environment , 2003 .

[7]  P.M.E. De Bra,et al.  AHA! a general-purpose tool for adaptive websites , 2002 .

[8]  Nick Cercone From Computational Intelligence to Web Intelligence: An Ensemble from Potpourri , 2001, Web Intelligence.

[9]  Tao Luo,et al.  Effective personalization based on association rule discovery from web usage data , 2001, WIDM '01.

[10]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[11]  Oren Etzioni,et al.  Adaptive Web sites , 2000, CACM.

[12]  Vladimir Cherkassky,et al.  The Nature Of Statistical Learning Theory , 1997, IEEE Trans. Neural Networks.

[13]  Georgios Paliouras,et al.  Clustering the Users of Large Web Sites into Communities , 2000, ICML.

[14]  J. Wade Davis,et al.  Statistical Pattern Recognition , 2003, Technometrics.

[15]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[16]  Anupam Joshi,et al.  Low-complexity fuzzy relational clustering algorithms for Web mining , 2001, IEEE Trans. Fuzzy Syst..

[17]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[18]  Lior Rokach,et al.  An Introduction to Decision Trees , 2007 .

[19]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[20]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[21]  Anupam,et al.  Mining Web Access Logs Using Relational Competitive Fuzzy Clustering , 1999 .

[22]  M. Virvou,et al.  Initializing the student model using stereotypes and machine learning , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[23]  Jean-Pierre Nadal,et al.  Symbolic Data Analysis With the K-Means Algorithm for User Profiling , 1997 .

[24]  Jean-David Ruvini Adapting to the User's Internet Search Strategy , 2003, User Modeling.

[25]  Pedro M. Domingos,et al.  Adaptive Web Navigation for Wireless Devices , 2001, IJCAI.

[26]  G. V. Kass An Exploratory Technique for Investigating Large Quantities of Categorical Data , 1980 .

[27]  Joseph E. Beck,et al.  Using a Learning Agent with a Student Model , 1998, Intelligent Tutoring Systems.

[28]  Andreas Geyer-Schulz,et al.  Evaluation of Recommender Algorithms for an Internet Information Broker based on Simple Association Rules and on the Repeat-Buying Theory , 2002 .

[29]  Ingrid Zukerman,et al.  # 2001 Kluwer Academic Publishers. Printed in the Netherlands. Predictive Statistical Models for User Modeling , 1999 .

[30]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[31]  Ralph Schäfer,et al.  Assessing Temporally Variable User Properties With Dynamic Bayesian Networks , 1997 .

[32]  Hannu Koivisto,et al.  Profiling Network Applications with Fuzzy C-Means Clustering and Self-Organizing Map , 2002, FSKD.

[33]  Ronald L. Rivest,et al.  Training a 3-node neural network is NP-complete , 1988, COLT '88.

[34]  PatternsYongjian,et al.  Clustering of Web Users Based on Access , 1999 .

[35]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[36]  Alfred Kobsa,et al.  Adaptable and Adaptive Information Access for All Users, Including the Disabled and the Elderly , 1997 .

[37]  Helen Pain,et al.  Modelling of novices control skills with machine learning , 1999 .

[38]  Cristina Conati,et al.  On-Line Student Modeling for Coached Problem Solving Using Bayesian Networks , 1997 .

[39]  Ashish Sureka,et al.  Mining for bidding strategies on ebay , 2003 .

[40]  Constantine D. Spyropoulos,et al.  Exploiting learning techniques for the acquisition of user stereotypes and communities , 1999 .

[41]  A. K. Jain,et al.  Data Clustering : A , 2007 .

[42]  Alfred Kobsa,et al.  Generic User Modeling Systems , 2001, User Modeling and User-Adapted Interaction.

[43]  Zheng Chen,et al.  User Modeling for Efficient Use of Multimedia Files , 2001, IEEE Pacific Rim Conference on Multimedia.

[44]  Geoffrey I. Webb,et al.  # 2001 Kluwer Academic Publishers. Printed in the Netherlands. Machine Learning for User Modeling , 1999 .

[45]  Oren Etzioni,et al.  Adaptive Web Sites: an AI Challenge , 1997, IJCAI.

[46]  Wei-Ying Ma,et al.  User Intention Modeling in Web Applications Using Data Mining , 2002, World Wide Web.

[47]  Javed Mostafa,et al.  Empirical evaluation of explicit versus implicit acquisition of user profiles in information filtering systems , 1999, DL '99.

[48]  Jaideep Srivastava,et al.  Automatic personalization based on Web usage mining , 2000, CACM.

[49]  P. Langley,et al.  Average-case analysis of a nearest neighbor algorthim , 1993, IJCAI 1993.

[50]  Xiaohua Hu,et al.  From Computational Intelligence to Web Intelligence , 2002, Computer.

[51]  Jack Mostow,et al.  Predicting Student Help-Request Behavior in an Intelligent Tutor for Reading , 2003, User Modeling.

[52]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[53]  Ingrid Zukerman,et al.  Pre-sending Documents on the WWW: A Comparative Study , 1999, IJCAI.

[54]  Dan Duchamp,et al.  Prefetching Hyperlinks , 1999, USENIX Symposium on Internet Technologies and Systems.

[55]  Carl G. Looney,et al.  Pattern recognition using neural networks: theory and algorithms for engineers and scientists , 1997 .

[56]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[57]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[58]  Ali Zilouchian,et al.  FUNDAMENTALS OF NEURAL NETWORKS , 2001 .

[59]  Geoffrey I. Webb,et al.  Comparative evaluation of alternative induction engines for Feature Based Modelling , 1997 .

[60]  Luigi Palopoli,et al.  On the Complexity of Mining Association Rules , 2001, SEBD.

[61]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[62]  Sebastián Ventura,et al.  Discovering Prediction Rules in AHA! Courses , 2003, User Modeling.

[63]  Wan-I Lee,et al.  The application of nearest neighbor algorithm on creating an adaptive on-line learning system , 2001, 31st Annual Frontiers in Education Conference. Impact on Engineering and Science Education. Conference Proceedings (Cat. No.01CH37193).

[64]  Xiangmin Zhang Discriminant Analysis as a Machine Learning Method for Revision of User Stereotypes of Information Retrieval Systems , 2003 .

[65]  Alan F. Smeaton,et al.  Personalisation and recommender systems in digital libraries , 2005, International Journal on Digital Libraries.

[66]  Ian Davidson,et al.  Speeding up k-means Clustering by Bootstrap Averaging , 2003 .

[67]  Pat Langley,et al.  Average-Case Analysis of a Nearest Neighbor Algorithm , 1993, IJCAI.

[68]  Robert Meersman,et al.  On the Complexity of Mining Quantitative Association Rules , 1998, Data Mining and Knowledge Discovery.

[69]  Peter Brusilovsky,et al.  User as Student: Towards an Adaptive Interface for Advanced Web-Based Applications , 1997 .

[70]  Frank Wittig Learning Bayesian networks with hidden variables for user modeling , 1999 .

[71]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[72]  Eric Horvitz,et al.  The Lumière Project: Bayesian User Modeling for Inferring the Goals and Needs of Software Users , 1998, UAI.

[73]  Oren Etzioni,et al.  Towards adaptive Web sites: Conceptual framework and case study , 1999, Artif. Intell..

[74]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[75]  Pedro M. Domingos,et al.  Relational Markov models and their application to adaptive web navigation , 2002, KDD.

[76]  Yannis Manolopoulos,et al.  . EFFECTIVE PREDICTION OF WEB-USER ACCESSES: A DATA MINING APPROACH , 2001 .

[77]  K. Vanhoof,et al.  Clustering navigation patterns on a website using a Sequence Alignment Method , 2001 .

[78]  Kenneth Chin,et al.  Support Vector Machines applied to Speech Pattern Classification , 1999 .

[79]  Michael A. Shepherd,et al.  Adaptive user modeling for filtering electronic news , 2002, Proceedings of the 35th Annual Hawaii International Conference on System Sciences.

[80]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[81]  Robert C. Kohberger,et al.  Cluster Analysis (3rd ed.) , 1994 .

[82]  B Efron,et al.  Statistical Data Analysis in the Computer Age , 1991, Science.

[83]  Atsuhiro Takasu,et al.  Category Based Customization Approach for Information Retrieval , 2001, User Modeling.

[84]  Daniel S. Hirschberg,et al.  The Time Complexity of Decision Tree Induction , 1995 .

[85]  Takashi Washio,et al.  Automatic Web-Page Classification by Using Machine Learning Methods , 2001, Web Intelligence.

[86]  Patrick Gallinari,et al.  Statistical machine learning for tracking hypermedia user behaviour , 2003 .

[87]  Ramesh R. Sarukkai,et al.  Link prediction and path analysis using Markov chains , 2000, Comput. Networks.

[88]  Forest Baskett,et al.  An Algorithm for Finding Nearest Neighbors , 1975, IEEE Transactions on Computers.

[89]  Lakhmi C. Jain,et al.  Introduction to Bayesian Networks , 2008 .

[90]  Doug Riecken,et al.  Introduction: personalized views of personalization , 2000, CACM.

[91]  Ian H. Witten,et al.  Weka: Practical machine learning tools and techniques with Java implementations , 1999 .

[92]  Michael J. Pazzani,et al.  A hybrid user model for news story classification , 1999 .

[93]  George Karypis,et al.  Selective Markov models for predicting Web page accesses , 2004, TOIT.

[94]  Ian Witten,et al.  Data Mining , 2000 .

[95]  Russell Greiner,et al.  Learning a Model of a Web User's Interests , 2003, User Modeling.

[96]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.