Fabrication of TiO2 Nanotube Arrays by Electrochemical Anodization: Four Synthesis Generations

[1]  Nageh K. Allam,et al.  Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays , 2008 .

[2]  C. Grimes,et al.  Synthesis of ordered arrays of discrete, partially crystalline titania nanotubes by Ti anodization using diethylene glycol electrolytes , 2008 .

[3]  C. Chu,et al.  Efficient inverted solar cells using TiO2 nanotube arrays , 2008, Nanotechnology.

[4]  Nageh K. Allam,et al.  Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes , 2008 .

[5]  Mukundan Thelakkat,et al.  Highly efficient solar cells using TiO(2) nanotube arrays sensitized with a donor-antenna dye. , 2008, Nano letters.

[6]  Jaekyung Yoon,et al.  Enzymatic hydrogen production by light-sensitized anodized tubular TiO2 photoanode , 2008 .

[7]  Seong J. Cho,et al.  Vertically Oriented Titania Nanotubes Prepared by Anodic Oxidation on Si Substrates , 2008, IEEE Transactions on Nanotechnology.

[8]  Seong J. Cho,et al.  Thickness-conversion ratio from titanium to TiO2 nanotube fabricated by anodization method , 2008 .

[9]  Yanbiao Liu,et al.  The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte , 2008 .

[10]  Zhiqun Lin,et al.  Freestanding TiO2 Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical Anodization , 2008 .

[11]  Akira Fujishima,et al.  Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol , 2008 .

[12]  Qing Chen,et al.  CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. , 2008, Journal of the American Chemical Society.

[13]  C. Richter,et al.  A Study of Titania Nanotube Synthesis in Chloride-Ion-Containing Media , 2008 .

[14]  Tejal A Desai,et al.  Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? , 2007, Small.

[15]  P. Kajitvichyanukul,et al.  Self-organized TiO_2 nanotube arrays by anodization of Ti substrate: Effect of anodization time, voltage and medium composition on oxide morphology and photoelectrochemical response , 2007 .

[16]  Tejal A Desai,et al.  Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. , 2007, Biomaterials.

[17]  Somnath C. Roy,et al.  The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. , 2007, Biomaterials.

[18]  Craig A Grimes,et al.  Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[19]  Xiaobo Chen,et al.  Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium anodization , 2007 .

[20]  C. Grimes,et al.  High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays , 2007 .

[21]  Craig A. Grimes,et al.  TiO2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil: Phenol Red Diffusion , 2007 .

[22]  Craig A. Grimes,et al.  Formation of Vertically Oriented TiO2 Nanotube Arrays using a Fluoride Free HCl Aqueous Electrolyte , 2007 .

[23]  C. Grimes,et al.  Fabrication of Vertically Oriented TiO2 Nanotube Arrays Using Dimethyl Sulfoxide Electrolytes , 2007 .

[24]  Zhengguo Jin,et al.  Synthesis and Morphology of TiO2 Nanotube Arrays by Anodic Oxidation Using Modified Glycerol-Based Electrolytes , 2007 .

[25]  P. Kajitvichyanukul,et al.  Titania nanotubes from pulse anodization of titanium foils , 2007 .

[26]  Guohua Chen,et al.  Fabrication of Boron-Doped TiO2 Nanotube Array Electrode and Investigation of Its Photoelectrochemical Capability , 2007 .

[27]  C. López,et al.  Synthesis and characterization of polycrystalline Sn and SnO2 films with wire morphologies , 2007 .

[28]  C. Richter,et al.  Titania nanotubes prepared by anodization in fluorine-free acids , 2007 .

[29]  V. K. Mahajan,et al.  Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode , 2007 .

[30]  Patrik Schmuki,et al.  Nanosize and vitality: TiO2 nanotube diameter directs cell fate. , 2007, Nano letters.

[31]  J. Macák,et al.  Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes , 2007 .

[32]  C. Bowen,et al.  Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte , 2007 .

[33]  Craig A. Grimes,et al.  A new benchmark for TiO2 nanotube array growth by anodization , 2007 .

[34]  Andrei Ghicov,et al.  Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. , 2007, Nano letters.

[35]  G. Centi,et al.  Photoactive titania nanostructured thin films: Synthesis and characteristics of ordered helical nanocoil array , 2007 .

[36]  Ronald J. Willey,et al.  Ultra‐High‐Aspect‐Ratio Titania Nanotubes , 2007 .

[37]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[38]  Xiufeng Xiao,et al.  Study on titania nanotube arrays prepared by titanium anodization in NH4F/H2SO4 solution , 2007 .

[39]  J. Macák,et al.  Robust Self-Organization of Oxide Nanotubes over a Wide pH Range , 2007 .

[40]  D. Ginley,et al.  Fabrication of nanoporous titania on glass and transparent conducting oxide substrates by anodization of titanium films , 2007 .

[41]  John C. Crittenden,et al.  Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions , 2007 .

[42]  Patrik Schmuki,et al.  Self-organized TiO2 nanotube layers as highly efficient photocatalysts. , 2007, Small.

[43]  Vesa-Pekka Lehto,et al.  Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment , 2007 .

[44]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[45]  H. Feng,et al.  Fabrication and Properties of TiO 2 Nanotube Arrays Using Glycerol-DMSO-H 2 O Electrolyte , 2007 .

[46]  C. Grimes,et al.  Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide−Water Mixtures , 2007 .

[47]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[48]  Lixia Yang,et al.  Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization , 2006 .

[49]  Haitao Huang,et al.  Enhanced photoelectrochemical current response of titania nanotube array , 2006 .

[50]  Philippe Knauth,et al.  Fabrication of self-organized TiO2 nanotubes from columnar titanium thin films sputtered on semiconductor surfaces , 2006 .

[51]  Jan M. Macak,et al.  Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes , 2006 .

[52]  William H. Smyrl,et al.  Titanium Dioxide Nanotube Arrays Fabricated by Anodizing Processes Electrochemical Properties , 2006 .

[53]  K. Rajeshwar,et al.  Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response. , 2006, The journal of physical chemistry. B.

[54]  Shinji Fujimoto,et al.  On wafer TiO2 nanotube-layer formation by anodization of Ti-films on Si , 2006 .

[55]  C. Grimes,et al.  Initial Studies on the Hydrogen Gas Sensing Properties of Highly-Ordered High Aspect Ratio TiO 2 Nanotube-Arrays 20 μ m to 222 μ m in Length , 2006 .

[56]  Kornelius Nielsch,et al.  Fast fabrication of long-range ordered porous alumina membranes by hard anodization , 2006, Nature materials.

[57]  Patrik Schmuki,et al.  TiO2 nanotubes : Tailoring the geometry in H3PO4/HF electrolytes , 2006 .

[58]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[59]  Y. Lai,et al.  Effects of the Structure of TiO2 Nanotube Array on Ti Substrate on Its Photocatalytic Activity , 2006 .

[60]  K. G. Ong,et al.  A Transcutaneous Hydrogen Sensor: From Design to Application , 2006 .

[61]  Craig A. Grimes,et al.  Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte , 2006 .

[62]  Jan M. Macak,et al.  Voltage Oscillations and Morphology during the Galvanostatic Formation of Self-Organized TiO2 Nanotubes , 2006 .

[63]  Jan M. Macak,et al.  N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia , 2006 .

[64]  Craig A. Grimes,et al.  Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes , 2006 .

[65]  Craig A. Grimes,et al.  Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays , 2006 .

[66]  H. Masuda,et al.  Anodic Formation of High-Aspect-Ratio Titania Nanotubes , 2006 .

[67]  J. Macák,et al.  Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization , 2006 .

[68]  Craig A. Grimes,et al.  Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements , 2006 .

[69]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[70]  C. Grimes,et al.  Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes : Preparation, characterization, and application to photoelectrochemical cells , 2006 .

[71]  Xiaofeng Yu,et al.  Formation of nanoporous titanium oxide films on silicon substrates using an anodization process , 2006 .

[72]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[73]  J. Macák,et al.  Self-organized porous TiO2 and ZrO2 produced by anodization , 2005 .

[74]  Jan M. Macak,et al.  Smooth anodic TiO2 nanotubes. , 2005, Angewandte Chemie.

[75]  M. Vázquez,et al.  Synthesis and magnetic properties of Ni nanocylinders in self-aligned and randomly disordered grown titania nanotubes , 2005 .

[76]  Eugeniu Balaur,et al.  Wetting behaviour of layers of TiO2 nanotubes with different diameters , 2005 .

[77]  Krishnan S. Raja,et al.  Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium , 2005 .

[78]  Jan M. Macak,et al.  Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F ∕ ( NH4 ) 2SO4 Electrolytes , 2005 .

[79]  Craig A. Grimes,et al.  Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films , 2005 .

[80]  C. López,et al.  Enhancement of electrochemical and photoelectrochemical properties of fibrous Zn and ZnO electrodes. , 2005, Chemical communications.

[81]  Jan M. Macak,et al.  Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes , 2005 .

[82]  Longtu Li,et al.  Fabrication of titanium oxide nanotube arrays by anodic oxidation , 2005 .

[83]  Eugeniu Balaur,et al.  Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes , 2005 .

[84]  Hiroki Habazaki,et al.  Nanoporous Anodic Niobium Oxide Formed in Phosphate/Glycerol Electrolyte , 2005 .

[85]  Jan M. Macak,et al.  Titanium oxide nanotubes prepared in phosphate electrolytes , 2005 .

[86]  Xie Quan,et al.  Preparation of titania nanotubes and their environmental applications as electrode. , 2005, Environmental science & technology.

[87]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[88]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[89]  Craig A Grimes,et al.  Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.

[90]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[91]  D. Landolt,et al.  EQCM Study of Anodic Film Growth on Valve Metals , 2004 .

[92]  E. Ebenso,et al.  Evaluation of the inhibitory effect of methylene blue dye on the corrosion of aluminium in hydrochloric acid , 2004 .

[93]  Jin-Ming Wu Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide , 2004 .

[94]  C. Grimes,et al.  A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. , 2004, Journal of nanoscience and nanotechnology.

[95]  Craig A. Grimes,et al.  A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination , 2004 .

[96]  N. Fraunholcz,et al.  Separation of waste plastics by froth flotation––a review, part I , 2004 .

[97]  Craig A. Grimes,et al.  A Self-Cleaning, Room-Temperature Titania-Nanotube Hydrogen Gas Sensor , 2003 .

[98]  Craig A. Grimes,et al.  Fabrication of tapered, conical-shaped titania nanotubes , 2003 .

[99]  Huifang Xu,et al.  Large oriented arrays and continuous films of TiO(2)-based nanotubes. , 2003, Journal of the American Chemical Society.

[100]  S. Yoshikawa,et al.  Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells , 2003 .

[101]  K. Wada,et al.  Highly Porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 Composite Nanostructures on Glass with Enhanced Photocatalysis Fabricated by Anodization and Sol-Gel Process. , 2003, The journal of physical chemistry. B.

[102]  G. Thompson,et al.  Development of porous anodic films on 2014-T4 aluminium alloy in tetraborate electrolyte , 2003 .

[103]  H. Föll,et al.  Organic and aqueous electrolytes used for etching macro- and mesoporous silicon , 2003 .

[104]  Craig A. Grimes,et al.  Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure , 2003 .

[105]  T. Root,et al.  DFT Study of Solvent Coordination Effects on Titanium-Based Epoxidation Catalysts. Part Two: Reactivity of Titanium Hydroperoxo Complexes in Ethylene Epoxidation , 2003 .

[106]  Patrik Schmuki,et al.  Self-Organized Porous Titanium Oxide Prepared in H 2 SO 4 / HF Electrolytes , 2003 .

[107]  P. Falaras,et al.  Synthesis of Porous Nanocrystalline TiO2 Foam , 2003 .

[108]  Ning Wang,et al.  Formation mechanism of TiO2 nanotubes , 2003 .

[109]  K. Saarinen,et al.  Uniform corrosion of titanium in alkaline hydrogen peroxide conditions: influence of transition metals and inhibitors calcium and silicate , 2002 .

[110]  M. Musiani,et al.  Nb Electrodissolution in Acid Fluoride Medium Steady-State and Impedance Investigations , 2002 .

[111]  Qing Chen,et al.  Trititanate nanotubes made via a single alkali treatment , 2002 .

[112]  M. Shirai,et al.  Application of Titania Nanotubes to a Dye-sensitized Solar Cell , 2002 .

[113]  K. Hanabusa,et al.  Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. , 2002, Journal of the American Chemical Society.

[114]  K. Izutsu Electrochemistry in Nonaqueous Solutions , 2002 .

[115]  S. Shinkai,et al.  Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template , 2002 .

[116]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[117]  M. Moskovits,et al.  Highly regular anatase nanotubule arrays fabricated in porous anodic templates , 2001 .

[118]  L. Young,et al.  Non-thickness-limited growth of anodic oxide films on tantalum , 2001 .

[119]  T Albrektsson,et al.  The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. , 2001, Medical engineering & physics.

[120]  R. Torresi,et al.  Mixed Cation and Anion Transport during Redox Cycling of a Self‐Doped Polyaniline Derivative in Nonaqueous Media , 2000 .

[121]  S. Yoshikawa,et al.  Formation of Titania Nanotubes with High Photo-Catalytic Activity , 2000 .

[122]  Marc Aucouturier,et al.  Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach , 1999 .

[123]  Marc Aucouturier,et al.  Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy , 1999 .

[124]  H. Imai,et al.  Direct preparation of anatase TiO2 nanotubes in porous alumina membranes , 1999 .

[125]  P. Lessner,et al.  THE NON-THICKNESS-LIMITED GROWTH OF ANODIC OXIDE FILMS ON VALVE METALS , 1999 .

[126]  Kornelius Nielsch,et al.  Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina , 1998 .

[127]  Frank Müller,et al.  Self-organized formation of hexagonal pore arrays in anodic alumina , 1998 .

[128]  Koichi Niihara,et al.  Formation of titanium oxide nanotube , 1998 .

[129]  D. Macdonald,et al.  On the Kinetics of Growth of Anodic Oxide Films , 1998 .

[130]  O. Kalugin,et al.  Properties of 1-1 electrolytes solutions in ethylene glycol at temperatures from 5 to 175 °C , 1998 .

[131]  G. Thompson,et al.  Porous anodic alumina: fabrication, characterization and applications , 1997 .

[132]  Peter K. Dorhout,et al.  Sol−Gel Template Synthesis of Semiconductor Nanostructures , 1997 .

[133]  A. Lemarchand,et al.  Growth and morphology of thick films formed on a metallic surface , 1996 .

[134]  P. Hoyer,et al.  Formation of a Titanium Dioxide Nanotube Array , 1996 .

[135]  G. Patermarakis,et al.  The mechanism of growth of porous anodic Al2O3 films on aluminium at high film thicknesses , 1995 .

[136]  G. Patermarakis,et al.  Mathematical models for the anodization conditions and structural features of porous anodic Al{sub 2}O{sub 3} films on aluminum , 1995 .

[137]  M. Lohrengel,et al.  Thin anodic oxide layers on aluminium and other valve metals: high field regime , 1993 .

[138]  B. Hwang,et al.  Kinetic model of anodic oxidation of titanium in sulphuric acid , 1993 .

[139]  D. Macdonald On the Formation of Voids in Anodic Oxide Films on Aluminum , 1993 .

[140]  V. Parkhutik,et al.  Theoretical modelling of porous oxide growth on aluminium , 1992 .

[141]  P. Lenas,et al.  Kinetics of growth of porous anodic Al2O3 films on A1 metal , 1991 .

[142]  R. C. Furneaux,et al.  The formation of controlled-porosity membranes from anodically oxidized aluminium , 1989, Nature.

[143]  J. Delplancke,et al.  Galvanostatic anodization of titanium—II. Reactions efficiencies and electrochemical behaviour model , 1988 .

[144]  M. Lohrengel,et al.  Nucleation and growth of anodic oxide films , 1983 .

[145]  A. Caprani,et al.  Anodic behaviour of titanium in acidic chloride containing media (HClNaCl). Influence of the constituents of the medium—I. Study of the stationary current. Calculation of the overall reaction orders , 1981 .

[146]  A. Murani Spin correlations in Au-Fe alloys , 1980 .

[147]  Arthur J. Nozik,et al.  Photoelectrochemistry: Applications to Solar Energy Conversion , 1978 .

[148]  G. Thompson,et al.  Nucleation and growth of porous anodic films on aluminium , 1978, Nature.

[149]  J. Siejka,et al.  An O18 Study of Field‐Assisted Pore Formation in Compact Anodic Oxide Films on Aluminum , 1977 .

[150]  J. J. Jasper,et al.  The Surface Tension of Pure Liquid Compounds , 1972 .

[151]  A. Samuni Precursors of the metal-complexed hydroperoxyl radical , 1972 .

[152]  G. C. Wood,et al.  The anodizing of aluminium in sulphate solutions , 1970 .

[153]  T. C. Downie,et al.  The dissolution of porous oxide films on aluminium , 1970 .

[154]  G. M. Krembs Residual Tritiated Water in Anodized Tantalum Films , 1963 .

[155]  C. A. Kraus,et al.  The Viscosity and the Conductance-Viscosity Product of Electrolyte Solutions in Bromine. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[156]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .

[157]  J. Bockris Electrolytic polarisation—I. The overpotential of hydrogen on some less common metals at high current densities. Influence of current density and time , 1947 .

[158]  E. Verwey Electrolytic conduction of a solid insulator at high fields The formation of the anodic oxide film on aluminium , 1935 .

[159]  F. Haber Über die Autoxydation und ihren Zusammenhang mit der Theorie der Ionen und der galvanischen Elemente , 1901 .