Neél order in square and triangular lattice Heisenberg models.

We show that the density matrix renormalization group can be used to study magnetic ordering in two-dimensional spin models. Local quantities should be extrapolated with the truncation error, not with its square root. We introduce sequences of clusters, using cylindrical boundary conditions with pinning fields, which provide for rapidly converging finite-size scaling. We determine the magnetization for both the square and triangular Heisenberg lattices with errors comparable to the best alternative approaches.

[1]  Rajiv R. P. Singh,et al.  Excitation spectra of the spin- 1 2 triangular-lattice Heisenberg antiferromagnet , 2006, cond-mat/0608008.

[2]  S. White Density matrix renormalization group algorithms with a single center site , 2005, cond-mat/0508709.

[3]  S. Todo,et al.  The ALPS Project: Open Source Software for Strongly Correlated Systems , 2004, cond-mat/0410407.

[4]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[5]  M. Troyer,et al.  Generalized directed loop method for quantum Monte Carlo simulations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  A. Sandvik,et al.  Quantum Monte Carlo with directed loops. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  T. Xiang,et al.  Two-dimensional algorithm of the density-matrix renormalization group , 2001, cond-mat/0102200.

[8]  L. Capriotti,et al.  Long-Range Néel Order in the Triangular Heisenberg Model , 1999, cond-mat/9901068.

[9]  M. Troyer,et al.  Low Temperature Behavior and Crossovers of the Square Lattice Quantum Heisenberg Antiferromagnet , 1998 .

[10]  A. Sandvik Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model , 1997, cond-mat/9707123.

[11]  Legeza,et al.  Accuracy of the density-matrix renormalization-group method. , 1996, Physical review. B, Condensed matter.

[12]  B. B. Beard,et al.  Simulations of Discrete Quantum Systems in Continuous Euclidean Time. , 1996, Physical review letters.

[13]  S. Sachdev,et al.  Large-S expansion for quantum antiferromagnets on a triangular lattice , 1994 .

[14]  C. Lhuillier,et al.  Exact spectra, spin susceptibilities, and order parameter of the quantum Heisenberg antiferromagnet on the triangular lattice. , 1994, Physical review. B, Condensed matter.

[15]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[16]  S. Sorella,et al.  Spin-Wave Theory on Finite Lattices: Application to the J1-J2 Heisenberg Model , 1993 .

[17]  Weihong,et al.  Spin-wave theory and finite-size scaling for the Heisenberg antiferromagnet. , 1992, Physical review. B, Condensed matter.

[18]  H. Ying,et al.  A determination of the low energy parameters of the 2-d Heisenberg antiferromagnet , 1992, cond-mat/9212006.

[19]  Lana,et al.  Cluster algorithm for vertex models. , 1992, Physical review letters.

[20]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[21]  S. Miyake Spin-Wave Results for the Staggered Magnetization of Triangular Heisenberg Antiferromagnet , 1992 .

[22]  Neuberger,et al.  Finite-size effects in Heisenberg antiferromagnets. , 1989, Physical review. B, Condensed matter.

[23]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.