Soft Exoskeleton Glove Enabling Force Feedback for Human-Like Finger Posture Control with 20 Degrees of Freedom

We introduce a novel soft exoskeleton glove capable of generating human-like finger joint movements with little constraints on volitional motions. Four pneumatic artificial muscles (approx. 2.5 mm in diameter and less than 2 g weight) were attached to each finger. They form two antagonistic pairs of muscles (i.e. flexor and extensor) and thereby enable the control of several postures of each finger independently. Implementing this structure for all five digits resulted in a hand exoskeleton with 20 DOFs for one hand. This architecture was designed similar to the human anatomy of the forearm muscle, which eventually ensured supporting a natural, unconstrained hand motion. Our system is capable of generating a pressing force of approx. 8 N as a static force and can manipulate a finger to perform high-speed tapping at approx. 10 Hz. Finally, we describe a semi-automatic fitting system that helps to attach the glove easily to the user’s body. Early investigations indicate that the basic technology of our system can contribute domains that need to provide physical force feedback and posture correction to the user’s fingers.

[1]  Yoseph Bar-Cohen,et al.  Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition , 2004 .

[2]  Jee-Hwan Ryu,et al.  Portable Exoskeleton Glove With Soft Structure for Hand Assistance in Activities of Daily Living , 2017, IEEE/ASME Transactions on Mechatronics.

[3]  Makoto Sato,et al.  Development of String-based Force Display: SPIDAR , 2002 .

[4]  Robert J. Wood,et al.  Soft robotic glove for combined assistance and at-home rehabilitation , 2015, Robotics Auton. Syst..

[5]  Brian Byunghyun Kang,et al.  Exo-Glove: A Wearable Robot for the Hand with a Soft Tendon Routing System , 2015, IEEE Robotics & Automation Magazine.

[6]  Robert V Kenyon,et al.  A Pneumatic Glove and Immersive Virtual Reality Environment for Hand Rehabilitative Training After Stroke , 2010, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[7]  Chad G. Rose,et al.  Hybrid Rigid-Soft Hand Exoskeleton to Assist Functional Dexterity , 2019, IEEE Robotics and Automation Letters.

[8]  Edward A. Clancy,et al.  A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation , 2013, 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR).

[9]  Leonardo Cappello,et al.  Modelling and design of a synergy-based actuator for a tendon-driven soft robotic glove , 2016, 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[10]  Conor J. Walsh,et al.  A pediatric robotic thumb exoskeleton for at-home rehabilitation: The Isolated Orthosis for Thumb Actuation (IOTA) , 2013, 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR).

[11]  Velko Vechev,et al.  DextrES: Wearable Haptic Feedback for Grasping in VR via a Thin Form-Factor Electrostatic Brake , 2018, UIST.

[12]  Toshiro Noritsugu,et al.  Wearable power assist device for hand grasping using pneumatic artificial rubber muscle , 2004 .

[13]  Haruhisa Kawasaki,et al.  Development of a Hand-Assist Robot With Multi-Degrees-of-Freedom for Rehabilitation Therapy , 2012, IEEE/ASME Transactions on Mechatronics.

[14]  Jun Rekimoto,et al.  PossessedHand: techniques for controlling human hands using electrical muscles stimuli , 2011, CHI.

[15]  Jumpei Arata,et al.  A new hand exoskeleton device for rehabilitation using a three-layered sliding spring mechanism , 2013, 2013 IEEE International Conference on Robotics and Automation.

[16]  Soo-Jin Lee,et al.  Current hand exoskeleton technologies for rehabilitation and assistive engineering , 2012 .

[17]  T. Milner,et al.  HandCARE: A Cable-Actuated Rehabilitation System to Train Hand Function After Stroke , 2008, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[18]  Stephen A. Morin,et al.  Soft Robotics: Review of Fluid‐Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human‐Robot Interaction   , 2017 .

[19]  Yasuhisa Hasegawa,et al.  Five-fingered assistive hand with mechanical compliance of human finger , 2008, 2008 IEEE International Conference on Robotics and Automation.