Low-voltage embedded RAMs in the nanometer era

Low-voltage high-density embedded RAMs (e-RAMs) in the nanometer era are described, with a focus on RAM cells and peripheral circuits. First, challenges and trends in low-voltage e-RAMs are described based on the signal-to-noise ratio problem of RAM cells, then leakage and speed-variation problems of peripheral circuits. Next, state-of-the-art low-voltage e-DRAMs and e-SRAMs are investigated, mainly focusing on cell structures and leakage-reduction circuits. Finally, future prospects for low-voltage e-RAMs are discussed.

[1]  B. R. Wilkins,et al.  Influences on soft error rates in static RAMs , 1987 .

[2]  S. Maegawa,et al.  Silicon on thin BOX: a new paradigm of the CMOSFET for low-power high-performance application featuring wide-range back-bias control , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[3]  H. Yamauchi,et al.  A 400MHz random-cycle dual-port interleaved DRAM with striped-trench capacitor , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[4]  K. Ishibashi,et al.  Universal-Vdd 0.65-2.0V 32 kB cache using voltage-adapted timing-generation scheme and a lithographical-symmetric cell , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[5]  K. Itoh,et al.  Dynamic-Vt, dual-power-supply SRAM cell using D2G-SOI for low-power SoC application , 2004, 2004 IEEE International SOI Conference (IEEE Cat. No.04CH37573).

[6]  Yunjae Suh,et al.  A 256MB synchronous-burst DDR SRAM with hierarchical bit-line architecture for mobile applications , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[7]  Kiyoo Itoh,et al.  Reviews and future prospects of low-voltage embedded RAMs , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[8]  Sang-beom Kang,et al.  64Mb mobile stacked single-crystal Si SRAM (S/sup 3/RAM) with selective dual pumping scheme (SDPS) and multi cell burn-in scheme (MCBS) for high density and low power SRAM , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).

[9]  N. Vallepalli,et al.  A 3-GHz 70-mb SRAM in 65-nm CMOS technology with integrated column-based dynamic power supply , 2005, IEEE Journal of Solid-State Circuits.

[10]  T. Gyohten,et al.  A 322 MHz random-cycle embedded DRAM with high-accuracy sensing and tuning , 2005, IEEE Journal of Solid-State Circuits.

[11]  K. Itoh,et al.  Subthreshold-current reduction circuits for multi-gigabit DRAM's , 1993, Symposium 1993 on VLSI Circuits.

[12]  K. Hardee,et al.  A 0.6V 205MHz 19.5ns tRC 16Mb embedded DRAM , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[13]  Takeshi Sakata,et al.  Two-Dimensional Power-Line Selection Scheme for Low Subthreshold-Current Multi-Gigabit DRAMs , 1993, ESSCIRC '93: Nineteenth European Solid-State Circuits Conference.

[14]  S. Shimada,et al.  Low-power embedded SRAM modules with expanded margins for writing , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[15]  Kinam Kim,et al.  The revolutionary and truly 3-dimensional 25F/sup 2/ SRAM technology with the smallest S/sup 3/ ( stacked single-crystal Si) cell, 0.16um/sup 2/, and SSTFT (atacked single-crystal thin film transistor) for ultra high density SRAM , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[16]  Kenichi Osada,et al.  Universal-Vdd 0.65-2.0-V 32-kB cache using a voltage-adapted timing-generation scheme and a lithographically symmetrical cell , 2001, IEEE J. Solid State Circuits.

[17]  N. Vallepalli,et al.  A 3-GHz 70MB SRAM in 65nm CMOS technology with integrated column-based dynamic power supply , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[18]  Masashi Horiguchi,et al.  Review and future prospects of low-voltage RAM circuits , 2003, IBM J. Res. Dev..

[19]  E. Alon,et al.  The implementation of a 2-core, multi-threaded itanium family processor , 2006, IEEE Journal of Solid-State Circuits.