Preferential theory revision

Employing a logic program approach, this paper focuses on applying preferential reasoning to theory revision, both by means of preferences among existing theory rules, and by means of preferences on the possible abductive extensions to the theory. And, in particular, how to prefer among plausible abductive explanations justifying observations. © 2006 Elsevier B.V. All rights reserved.

[1]  José Júlio Alferes,et al.  A Compilation of Updates plus Preferences , 2002, JELIA.

[2]  José Júlio Alferes,et al.  Debugging by Diagnosing Assumptions , 1993, AADEBUG.

[3]  Thomas Eiter,et al.  Preferred Answer Sets for Extended Logic Programs , 1999, Artif. Intell..

[4]  E. Caldin,et al.  The Aim and Structure of Physical Theory , 1955 .

[5]  José Júlio Alferes,et al.  Updates plus Preferences , 2000, JELIA.

[6]  José Júlio Alferes,et al.  Reasoning with Logic Programming , 1996, Lecture Notes in Computer Science.

[7]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[8]  Luís Moniz Pereira,et al.  Revised Stable Models - A Semantics for Logic Programs , 2005, EPIA.

[9]  Sven Ove Hansson,et al.  Ten Philosophical Problems in Belief Revision , 2003, J. Log. Comput..

[10]  H. Kyburg Iterated Belief Change Based on Epistemic Entrenchment* , 1994 .

[11]  Peter Gärdenfors The Role of Expectations in Reasoning , 1992, Logic at Work.

[12]  Luís Moniz Pereira,et al.  Philosophical incidence of logic programming , 2002 .

[13]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[14]  André Fuhrmann,et al.  Change, Choice and Inference , 2003 .

[15]  Robert A. Kowalski,et al.  Logic for problem solving , 1982, The computer science library : Artificial intelligence series.

[16]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[17]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[18]  Jon Doyle,et al.  Prospects for Preferences , 2004, Comput. Intell..

[19]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.