Orientation-Matching Minimization for Image Denoising and Inpainting

In this paper, we propose an orientation-matching functional minimization for image denoising and image inpainting. Following the two-step TV-Stokes algorithm (Rahman et al. in Scale space and variational methods in computer vision, pp. 473–482, Springer, Heidelberg, 2007; Tai et al. in Image processing based on partial differential equations, pp. 3–22, Springer, Heidelberg, 2006; Bertalmio et al. in Proc. conf. comp. vision pattern rec., pp. 355–362, 2001), a regularized tangential vector field with zero divergence condition is first obtained. Then a novel approach to reconstruct the image is proposed. Instead of finding an image that fits the regularized normal direction from the first step, we propose to minimize an orientation matching cost measuring the alignment between the image gradient and the regularized normal direction. This functional yields a new nonlinear partial differential equation (PDE) for reconstructing denoised and inpainted images. The equation has an adaptive diffusivity depending on the orientation of the regularized normal vector field, providing reconstructed images which have sharp edges and smooth regions. The additive operator splitting (AOS) scheme is used for discretizing Euler-Lagrange equations. We present the results of various numerical experiments that illustrate the improvements obtained with the new functional.

[1]  Alfred M. Bruckstein,et al.  On Gabor's contribution to image enhancement , 1994, Pattern Recognit..

[2]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[3]  Stanley Osher,et al.  Numerical Methods for p-Harmonic Flows and Applications to Image Processing , 2002, SIAM J. Numer. Anal..

[4]  Rachid Deriche,et al.  Orthonormal Vector Sets Regularization with PDE's and Applications , 2002, International Journal of Computer Vision.

[5]  Knut-Andreas Lie,et al.  Image Processing Based on Partial Differential Equations , 2007 .

[6]  Pietro Perona,et al.  Orientation diffusions , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Ron Kimmel,et al.  A Short- Time Beltrami Kernel for Smoothing Images and Manifolds , 2007, IEEE Transactions on Image Processing.

[8]  Knut-Andreas Lie,et al.  Scale Space and Variational Methods in Computer Vision, Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings , 2009, SSVM.

[9]  Xuecheng Tai,et al.  A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations , 1992 .

[10]  Ron Kimmel,et al.  StereographicCombing a Porcupine or Studies on Direction Diffusion in Image Processing , 2004, SIAM J. Appl. Math..

[11]  Xue-Cheng Tai,et al.  Noise removal using smoothed normals and surface fitting , 2004, IEEE Transactions on Image Processing.

[12]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[13]  Gabriele Steidl,et al.  Anisotropic Smoothing Using Double Orientations , 2009, SSVM.

[14]  Marcelo Bertalmío,et al.  Strong-continuation, contrast-invariant inpainting with a third-order optimal PDE , 2006, IEEE Transactions on Image Processing.

[15]  Guillermo Sapiro,et al.  Diffusion of General Data on Non-Flat Manifolds via Harmonic Maps Theory: The Direction Diffusion Case , 2000, International Journal of Computer Vision.

[16]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[17]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[18]  Pietro Perona Orientation diffusions , 1998, IEEE Trans. Image Process..

[19]  Talal Rahman,et al.  A Modified TV-Stokes Model for Image Processing , 2011, SIAM J. Sci. Comput..

[20]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[22]  Guillermo Sapiro,et al.  Filling-in by joint interpolation of vector fields and gray levels , 2001, IEEE Trans. Image Process..

[23]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[24]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[25]  Joachim Weickert,et al.  Tensor Field Interpolation with PDEs , 2006, Visualization and Processing of Tensor Fields.

[26]  T. Chan,et al.  Variational image inpainting , 2005 .

[27]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[28]  Zhen Liu,et al.  An Improved LOT Model for Image Restoration , 2009, Journal of Mathematical Imaging and Vision.

[29]  Xue-Cheng Tai,et al.  Iterative Image Restoration Combining Total Variation Minimization and a Second-Order Functional , 2005, International Journal of Computer Vision.

[30]  Chang-Ock Lee,et al.  A Nonlinear Structure Tensor with the Diffusivity Matrix Composed of the Image Gradient , 2009, Journal of Mathematical Imaging and Vision.

[31]  Alfred M. Bruckstein,et al.  Regularized Laplacian Zero Crossings as Optimal Edge Integrators , 2003, International Journal of Computer Vision.

[32]  Talal Rahman,et al.  A TV-Stokes Denoising Algorithm , 2007, SSVM.

[33]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[35]  Raymond H. Chan,et al.  Inpainting by Flexible Haar-Wavelet Shrinkage , 2008, SIAM J. Imaging Sci..

[36]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[37]  Frédéric Cao,et al.  Interpolating Orientation Fields: An Axiomatic Approach , 2006, ECCV.

[38]  Xue-Cheng Tai,et al.  Image Inpainting Using a TV-Stokes Equation , 2007 .

[39]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[40]  Jianhong Shen,et al.  EULER'S ELASTICA AND CURVATURE BASED INPAINTINGS , 2002 .

[41]  Tony F. Chan,et al.  Non-texture inpainting by curvature-driven diffusions (CDD) , 2001 .

[42]  Thomas Brox,et al.  Nonlinear structure tensors , 2006, Image Vis. Comput..

[43]  Guillermo Sapiro,et al.  Navier-stokes, fluid dynamics, and image and video inpainting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[44]  T. Chan,et al.  Fast dual minimization of the vectorial total variation norm and applications to color image processing , 2008 .